Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400596, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797710

RESUMO

Over the last years, solid-state electrolytes made of an ionic liquid (IL) confined in a solid (inorganic or polymer) matrix, also known as ionogels, have been proposed to solve the leakage problems occurring at high temperatures in classical electrical double-layer capacitors (EDLCs) with an organic electrolyte, and thereof improve the safety. However, making ionogel-based EDLCs perform with reasonable power at low temperature is still a major challenge due to the high melting point of the confined IL. To overcome these limitations, the present contribution discloses ionogel films prepared in a totally oxygen/moisture-free atmosphere by encapsulating 70 wt % of an equimolar mixture of 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and 1-ethyl-3-methylimidazolium tetrafluoroborate - [EMIm][BF4]0.5[FSI]0.5 - into a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) network. The further called "binary ionogel" films demonstrated a high flexibility and a good ionic conductivity of 5.8 mS cm-1 at 20 °C. Contrary to the ionogels prepared from either [EMIm][FSI] or [EMIm][BF4], displaying melting at Tm=-16 °C and -7 °C, respectively, the crystallization of confined [EMIm][BF4]0.5[FSI]0.5 is quenched in the binary ionogel, which shows only a glass transition at -101 °C. This quenching enables an increased ionicity and ionic diffusion at the interface with the PVdF host network, leading the binary ionogel membrane to display higher ionic conductivity below -20 °C than the parent binary [EMIm][BF4]0.5[FSI]0.5 liquid. Laminate EDLCs were built with a 100 µm thick binary ionogel separator and electrodes made from a hierarchical micro-/mesoporous MgO-templated carbon containing a reasonable proportion of mesopores to enhance the mass transport of ions, especially at low temperature where the ionic diffusion noticeably decreases. The EDLCs operated up to 3.0 V with ideal EDL characteristics from -40 °C to room temperature. Their output specific energy under a discharge power of 1 kW kg-1 is ca. 4 times larger than with a cell implementing the same carbon electrodes together with the binary [EMIm][BF4]0.5[FSI]0.5 liquid. Hence, this binary ionogel electrolyte concept paves the road for developing safe and flexible solid-state energy storage devices operating at subambient temperatures in extreme environments.

2.
ChemSusChem ; 14(4): 1196-1208, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33382192

RESUMO

We report on electrical double-layer capacitors (EDLCs) performing effectively at low temperature (down to -40 °C), owing to the tuned characteristics of both the ionic liquid (IL) electrolyte and carbonaceous electrodes. The transport properties of the electrolyte have been enhanced by adding a low-viscosity IL with the tetracyanoborate anion, [EMIm][TCB], to a mixture of [EMIm][FSI] with [EMIm][BF4 ], which was already successfully applied for this application. The formulated ternary electrolyte, [EMIm][FSI]0.6 [BF4 ]0.1 [TCB]0.3 , remained in the liquid state until it reached the glass transition at -99 °C and displayed a relatively low viscosity and high conductivity (η=23.6 mP s and σ=14.2 mS cm-1 at 20 °C, respectively). The electrodes were made of a hierarchical SiO2 -templated carbon with well-defined and uniform mesopores of ∼9 nm facilitating ion transport to the interconnected micropores accounted for the charge storage, whereas the high density of the electrodes promoted high volumetric energy outputs of the cells.

3.
ChemSusChem ; 13(7): 1876-1881, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-31999882

RESUMO

AC/AC (AC=activated carbon) electrochemical capacitors (ECs) were designed with a 1 mol L-1 lithium sulfate hydrogel- polymer electrolyte (HPE) based on carboxymethyl cellulose sodium salt (CMC). The electrochemical performance of the ECs was compared with that of cells composed of common separators such as a polyolefin membrane (Celgard 3501, polypropylene separator coated by surfactant) and a glass microfiber membrane (Whatman GF/A). The ECs with Celgard 3501 and home-made CMC-HPE demonstrated a higher volumetric energy than that with Whatman GF/A. However, after 120 h of floating at 1.5 V, the capacitance of the EC with Celgard 3501 decreased dramatically by 25 %, whereas with CMC-HPE and Whatman GF/A, the decrease was only 4 and 6 %, respectively. Post-mortem observations of the Celgard 3501 separator after floating suggested that the surfactant layer was removed, which caused a decrease of separator wettability, as confirmed by the slow evolution of the electrolyte contact angle on its surface. Hence, CMC-HPE is a very attractive option to develop aqueous-electrolyte-based ECs with an excellent life span and high volumetric energy density.

4.
Angew Chem Int Ed Engl ; 58(50): 17969-17977, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31595662

RESUMO

Enhancing the operating voltage of supercapacitors (SCs), hence their specific energy, is important. However, long-term hold at high voltage entails loss of capacitance, increase of resistance and internal pressure. Such detrimental effects could be reduced by obtaining quantitative information on the relative impact of the various mechanisms leading to the worsening of the SCs performance. Now, for a carbon/carbon supercapacitor in aqueous Li2 SO4 , a self-consistent approach is used to assign leaking charge during high voltage hold to the charge: 1) distributed throughout the electrochemical cell (steady-state leakage current measurements), 2) spent at each electrode for gases production (operando electrochemical mass spectrometry (EMS) analysis and pressure records), 3) utilized to oxidize the electrodes surface (from post-mortem surface functionality determination by temperature programmed desorption (TPD)), and 4) used for other parasitic reactions.

5.
ChemSusChem ; 11(5): 975-984, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29240966

RESUMO

Cholinium chloride at a concentration of 5 mol kg-1 in water is proposed as a low-cost and environmentally friendly aqueous electrolyte, enabling extension of the operating range of carbon/carbon supercapacitors (SCs) down to -40 °C. This solution has a pH close to neutrality (pH 6.1) and high conductivity of 88 mS cm-1 at 24 °C. The supercapacitors demonstrate a high capacitance of 126 F g-1 (per mass of one electrode) and long life span at voltages up to 1.5 V. At -40 °C, the carbon/carbon SCs display excellent electrochemical characteristics with only slightly reduced capacitance of 106 F g-1 and negligible ohmic losses. As compared to previous works, where antifreezing additives were introduced in traditional neutral electrolytes, the low solubility of the salt and related poor conductivity of the solution is no longer an issue, which makes cholinium salt aqueous solutions very promising for SCs operating at sub-ambient temperature conditions.


Assuntos
Carbono/química , Cloretos/química , Temperatura Baixa , Capacitância Elétrica , Eletrólitos/química , Química Verde , Técnicas Eletroquímicas , Sais
8.
Adv Mater ; 26(14): 2219-51, 2283, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24497347

RESUMO

Electrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors.

9.
ChemSusChem ; 6(8): 1516-22, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23794416

RESUMO

A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content. The superior CNF/AC composite displays excellent electrochemical performance in a 0.5 mol L(-1) solution of K2 SO4 due to its unique structure. At a high scan rate (100 mV s(-1) ) and current loading (20 A g(-1) ), the capacitance values were three- and fourfold higher than those for classical AC/carbon black composites. Owing to this feature, a high energy of 10 Wh kg(-1) was obtained over a wide power range in neutral medium at a voltage of 0.8 V. The significant enhancement of charge propagation is attributed to the presence of herringbone CNFs, which facilitate the diffusion of ions in the electrode and play the role of electronic bridges between AC particles. An in situ coating of AC with short CNFs (below 200 nm) is a very attractive method for producing the next generation of carbon composite materials with a high power performance in supercapacitors working in neutral medium.


Assuntos
Carbono/química , Capacitância Elétrica , Nanofibras/química , Condutividade Elétrica , Eletrodos , Propriedades de Superfície , Temperatura
10.
Nat Mater ; 12(4): 351-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23416727

RESUMO

Supercapacitors are electrochemical energy-storage devices that exploit the electrostatic interaction between high-surface-area nanoporous electrodes and electrolyte ions. Insight into the molecular mechanisms at work inside supercapacitor carbon electrodes is obtained with (13)C and (11)B ex situ magic-angle spinning nuclear magnetic resonance (MAS-NMR). In activated carbons soaked with an electrolyte solution, two distinct adsorption sites are detected by NMR, both undergoing chemical exchange with the free electrolyte molecules. On charging, anions are substituted by cations in the negative carbon electrode and cations by anions in the positive electrode, and their proportions in each electrode are quantified by NMR. Moreover, acetonitrile molecules are expelled from the adsorption sites at the negative electrode alone. Two nanoporous carbon materials were tested, with different nanotexture orders (using Raman and (13)C MAS-NMR spectroscopies), and the more disordered carbon shows a better capacitance and a better tolerance to high voltages.

11.
Phys Chem Chem Phys ; 14(22): 8199-207, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22546714

RESUMO

This study describes the preparation, characterization and application of [Et(3)NH][TFSA], either neat or mixed with acetonitrile, as an electrolyte for supercapacitors. Thermal and transport properties were evaluated for the neat [Et(3)NH][TFSA], and the temperature dependence of viscosity and conductivity can be described by the VTF equation. The evolution of conductivity with the addition of acetonitrile rendered it possible to determine the optimal mixture at 25 °C, with a weight fraction of acetonitrile of 0.5. This mixture was also evaluated for transport properties, and showed a Newtonian behavior, as the neat PIL. An electrochemical study demonstrated, at first, a passivation on Al after the second cyclic voltammogram. Subsequently, the electrochemical window was estimated using a three-electrode cell to 4 V on a platinum electrode, and to 2.5 V on activated carbon. Finally, the neat PIL was found to exhibit good performances as promising electrolyte for supercapacitor applications.

12.
Solid State Nucl Magn Reson ; 42: 81-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22316606

RESUMO

We show that natural abundance, solid-state MAS-NMR (13)C INADEQUATE spectra can be recorded for crystallized C(70), using the through-bond J-coupling for the magnetization transfer. The effect of strong J-coupling can be lessened at high magnetic fields, allowing the observation of cross-peaks between close resonances. DFT calculations of the chemical shifts show an excellent agreement with the experimental values. A correlation is observed between the average CCC bond angles and the (13)C chemical shift, offering a way to understand the dispersion of (13)C chemical shifts in nanoporous activated carbons in terms of local deviations from planarity.


Assuntos
Carbono/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular
13.
Nanomedicine ; 8(3): 299-307, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21723243

RESUMO

Aiming to explore the mechanisms modulating cell-carbon nanotube interactions, we investigated whether Ca(2+) ion balancing between intra- and extracellular environments could be affected by multiwalled carbon nanotubes (MWCNTs). We analyzed the effects induced by two different kinds of MWCNTs (as prepared and annealed at 2400°C) on the intracellular Ca(2+) ion levels in rat electrically sensitive cells and on the intercellular junction integrity of rat adenocarcinoma colon cells and platelet aggregation ability, which depend on the Ca(2+) concentration in the medium. MWCNTs, purified by annealing and more electroconductive as compared to nonannealed MWCNTs, affected Ca(2+) ion balancing between extra- and intracellular environments and induced changes on Ca(2+) ion-dependent cellular junctions and platelet aggregation, behaving as the calcium chelator ethylene glycol tetraacetic acid. This could be due to the sorption of cationic Ca(2+) ions on CNTs surface because of the excess of negatively charged electrons on the aromatic units formed on MWCNTs after annealing. From the ClinicAL Editor: The authors investigated whether Ca(2+) ion balance between intra- and extracellular space can be modulated by multiwalled carbon nanotubes (MWCNTs). Annealed nanotubes induced changes on Ca(2+) dependent cellular junctions and platelet aggregation, behaving similary to ethylene glycol tetraacetic acid, an established calcium chelator.


Assuntos
Cálcio/metabolismo , Condutividade Elétrica , Nanotecnologia/métodos , Nanotubos de Carbono/química , Animais , Linhagem Celular Tumoral , Forma Celular , Impedância Elétrica , Técnicas Eletroquímicas , Elétrons , Humanos , Junções Intercelulares/metabolismo , Espaço Intracelular/metabolismo , Íons , Agregação Plaquetária , Plasma Rico em Plaquetas/metabolismo , Ratos , Compostos de Estanho/química
14.
ChemSusChem ; 4(7): 943-9, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21302364

RESUMO

The advantages provided by multiwalled carbon nanotubes (CNTs) as backbones for composite supercapacitor electrodes are discussed. This paper particularly highlights the electrochemical properties of carbon composites obtained by pyrolysis of seaweed/CNTs blends. Due to the nanotexturing effect of CNTs, supercapacitors fabricated with electrodes from these composites exhibit enhanced electrochemical performances compared with CNT-free carbons. The cell resistance is dramatically reduced by the excellent conductivity of CNTs and by the good propagation of ions favored by the presence of opened mesopores. As a consequence, the specific power of supercapacitors based on these nanocomposites is very high. Another advantage related to the presence of CNTs is a better life cycle of the systems. The composite electrodes are resilient during the charge/discharge of capacitors; these are able to perfectly accommodate the dimensional changes appearing in the active material without mechanical damages.


Assuntos
Capacitância Elétrica , Nanotubos de Carbono/química , Alga Marinha/química , Fenômenos Químicos , Eletroquímica , Nanocompostos/química , Água/química
15.
Environ Sci Technol ; 42(12): 4500-6, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18605577

RESUMO

The electrochemical regeneration of an activated carbon cloth exhausted with a common herbicide (bentazone) was investigated under different operating conditions. The reversibility of the desorption process was confirmed by monitoring the UV spectra of the solution while cathodic polarization is being applied. Neither nanotextural nor chemical changes are produced in the carbon cloth upon polarization in the absence of the adsorbate. Upon cathodic polarization of a carbon cloth working electrode preloaded with bentazone, negative charges appear on the surface. A partial bentazone desorption results from repulsive electrostatic interactions between the negative charges on the carbon cloth and bentazone. When the electrode potential is below the thermodynamic value for cathodic decomposition of water, hydroxyl ions are liberated. Such ions provoke local pH changes that are responsible of the dissociation of bentazone and carbon surface groups to their anionic form. As a consequence of the pH increase, an almost reversible desorption of bentazone is observed. The effects of several operating parameters on the regeneration efficiency were evaluated. Higher regeneration efficiencies were attained under potentiostatic as compared to galvanostatic conditions, as OH- production strongly depends on the applied potential.


Assuntos
Benzotiadiazinas/química , Carbono/química , Eletroquímica/métodos , Concentração de Íons de Hidrogênio , Espectrofotometria Ultravioleta
16.
Chem Res Toxicol ; 21(9): 1690-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18636755

RESUMO

Carbon nanotubes (CNT) have been reported to elicit toxic responses in vitro and in vivo, ascribed so far to metal contamination, CNT length, degree of oxidation, or extent of hydrophilicity. To examine how structural properties may modulate the toxicity of CNT, one preparation of multiwall CNT has been modified (i) by grinding (introducing structural defects) and subsequently heating either in a vacuum at 600 degrees C (causing reduction of oxygenated carbon functionalities and reduction of metallic oxides) or in an inert atmosphere at 2400 degrees C (causing elimination of metals and annealing of defects) and (ii) by heating at 2400 degrees C in an inert atmosphere and subsequently grinding the thermally treated CNT (introducing defects in a metal-deprived carbon framework). The presence of framework and surface defects, metals, and oxygenated functionalities was monitored by means of a set of techniques, including micro-Raman spectroscopy, adsorption calorimetry, X-ray photoelectron spectroscopy, inductively coupled plasma mass spectrometry, and atomic emission spectroscopy. Contrary to traditional toxicants, such as asbestos, CNT may quench rather than generate oxygenated free radicals. The potential of the modified CNT to scavenge hydroxyl radicals was thus evaluated by means of electron spin resonance spectroscopy (spin trapping). The original ground material exhibited a scavenging activity toward hydroxyl radicals, which was eliminated by heating at 2400 degrees C but restored upon grinding. This scavenging activity, related to the presence of defects, appears to go paired with the genotoxic and inflammatory potential of CNT reported in the companion paper. Thus, defects may be one of the major factors governing the toxic potential of CNT.


Assuntos
Fenômenos Químicos , Pneumopatias/induzido quimicamente , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Doença Aguda , Adsorção , Sequestradores de Radicais Livres/química , Humanos , Radical Hidroxila/química , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Temperatura , Volatilização , Água/química
17.
Chem Res Toxicol ; 21(9): 1698-705, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18636756

RESUMO

Experimental studies indicate that carbon nanotubes (CNTs) have the potential to induce adverse pulmonary effects, including alveolitis, fibrosis, and genotoxicity in epithelial cells. Here, we explored the physicochemical determinants of these toxic responses with progressively and selectively modified CNTs: ground multiwall CNTs modified by heating at 600 degrees C (loss of oxygenated carbon functionalities and reduction of oxidized metals) or at 2400 degrees C (annealing of structural defects and elimination of metals) and by grinding the material that had been heated at 2400 degrees C before (introduction of structural defects in a metal-deprived framework). The CNTs were administered intratracheally (2 mg/rat) to Wistar rats to evaluate the short-term response (3 days) in bronchoalveolar lavage fluid (LDH, proteins, cellular infiltration, IL-1beta, and TNF-alpha). The long-term (60 days) lung response was assessed biochemically by measuring the lung hydroxyproline content and histologically. In vitro experiments were also performed on rat lung epithelial cells to assess the genotoxic potential of the modified CNTs with the cytokinesis block micronucleus assay. The results show that the acute pulmonary toxicity and the genotoxicity of CNT were reduced upon heating but restored upon grinding, indicating that the intrinsic toxicity of CNT is mainly mediated by the presence of defective sites in their carbon framework.


Assuntos
Pneumopatias/induzido quimicamente , Nanotubos de Carbono/toxicidade , Doença Aguda , Animais , Líquido da Lavagem Broncoalveolar/química , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Injeções Espinhais , L-Lactato Desidrogenase/análise , Pneumopatias/patologia , Macrófagos/efeitos dos fármacos , Testes para Micronúcleos , Nanotubos de Carbono/química , Neutrófilos/efeitos dos fármacos , Proteínas/análise , Ratos , Ratos Wistar
18.
Water Res ; 41(15): 3372-80, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17490705

RESUMO

An electrochemical technique has been applied to enhance the removal of a common herbicide (bentazone) from aqueous solutions using an activated carbon cloth as electrode. A pH increase from acidic to basic reduces the uptake, with capacities going from 127 down to 80 mg/g at pH 2 and 7, respectively. Increasing the oxygen content of the carbon cloth causes a decrease in the bentazone loading capacity at all pH values. This indicates that adsorption is governed by both dispersive and electrostatic interactions, the extent of which is controlled by the solution pH and the nature of the adsorbent. Anodic polarization of the carbon cloth noticeably enhances the adsorption of bentazone, to an extent depending on the current applied to the carbon electrode. The electrosorption is promoted by a local pH decrease provoked by anodic decomposition of water in the pores of the carbon cloth.


Assuntos
Benzotiadiazinas/química , Carbono/química , Herbicidas/química , Têxteis , Poluentes Químicos da Água/química , Adsorção , Eletroquímica , Concentração de Íons de Hidrogênio , Soluções , Purificação da Água/métodos
19.
Nano Lett ; 5(10): 2074-7, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16218740

RESUMO

Experimental studies of carbon nanotubes (CNTs) obtained through different synthesis routes show considerable variability in their mechanical properties. The strongest CNTs obtained so far had a high Young's modulus of 1 TPa but could only be produced in gram scale quantities. The synthesis by catalytic chemical vapor deposition, a method that holds the greatest potential for large-scale production, gives CNTs with a high defect density. This leads to low Young's modulus values below 100 GPa for multiwall CNTs. Here we performed direct measurements of the mechanical properties of catalytically grown CNTs with only a few walls and find a Young's modulus of 1 TPa. This high value is confirmed for CNTs grown under two different growth conditions where the synthesis parameters such as the hydrocarbon source, catalyst material, and the synthesis temperature were varied. The results indicate that the observed difference in the Young's modulus for the catalytically grown CNTs with high and low numbers of walls is probably related to the growth mechanism of CNT.

20.
J Nanosci Nanotechnol ; 2(5): 481-4, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12908283

RESUMO

For the first time, multiwalled carbon nanotubes (MWNTs) could be formed selectively in a high yield, free of any disordered carbon by-product, from the catalytic decomposition of acetylene at 600 degrees C on a CoxMg(1-x)O solid solution. Starting from 1 g of catalytic substrate, 4 g of pure MWNTs were obtained after its dissolution in boiling concentrated HCl, without any additional purification in strongly oxidizing medium, as is required for other methods of nanotube production. In situ reduction of CoO by dihydrogen liberated from acetylene decomposition allows highly divided metal particles to be continuously produced as synthesis proceeds. This is undoubtedly the reason for the good performance of the catalyst and for the ability to produce nanotubes in a narrow diameter range, namely from 10 to 15 nm. With the use of acetylene instead of methane, the synthesis proceeds at low temperature, which prevents the growth of carbon shells, in which the metal particles are generally embedded, decreasing their activity. Because of the very low specific surface area of the catalyst support, the amount of disordered carbon by-product formed is negligible.


Assuntos
Acetileno/química , Cobalto/química , Cristalização/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/isolamento & purificação , Catálise , Óxido de Magnésio/química , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Conformação Molecular , Nanotubos de Carbono/classificação , Controle de Qualidade , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...