Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(10): 11148-11167, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496982

RESUMO

Due to their Fe- and N-containing reactive urea ligand content, the hexakis(urea-O)iron(II) and hexakis(urea-O)iron(III) complexes were found to be versatile materials in various application fields of industry and environmental protection. In our present work, we have comprehensively reviewed the synthesis, structural and spectroscopic details, and thermal properties of hexakis(urea-O)iron(II) and hexakis(urea-O)iron(III) salts with different anions (NO3-, Cl-, Br- I-, I3-, ClO4-, MnO4-, SO42-, Cr2O72-, and S2O82-). We compared and evaluated the structural, spectroscopic (IR, Raman, UV-vis, Mössbauer, EPR, and X-ray), and thermogravimetric data. Based on the thermal behavior of these complexes, we evaluated the solid-phase quasi-intramolecular redox reactions of anions and urea ligands in these complexes and summarized the available information on the properties of the resulting simple and mixed iron-containing oxides. Furthermore, we give a complete overview of the application of these complexes as catalysts, reagents, absorbers, or agricultural raw materials.

2.
Inorg Chem ; 61(36): 14403-14418, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36044722

RESUMO

Research on new reaction routes and precursors to prepare catalysts for CO2 hydrogenation has enormous importance. Here, we report on the preparation of the permanganate salt of the urea-coordinated iron(III), [hexakis(urea-O)iron(III)]permanganate ([Fe(urea-O)6](MnO4)3) via an affordable synthesis route and preliminarily demonstrate the catalytic activity of its (Fe,Mn)Ox thermal decomposition products in CO2 hydrogenation. [Fe(urea-O)6](MnO4)3 contains O-coordinated urea ligands in octahedral propeller-like arrangement around the Fe3+ cation. There are extended hydrogen bond interactions between the permanganate ions and the hydrogen atoms of the urea ligands. These hydrogen bonds serve as reaction centers and have unique roles in the solid-phase quasi-intramolecular redox reaction of the urea ligand and the permanganate anion below the temperature of ligand loss of the complex cation. The decomposition mechanism of the urea ligand (ammonia elimination with the formation of isocyanuric acid and biuret) has been clarified. In an inert atmosphere, the final thermal decomposition product was manganese-containing wuestite, (Fe,Mn)O, at 800 °C, whereas in ambient air, two types of bixbyite (Fe,Mn)2O3 as well as jacobsite (Fe,Mn)T-4(Fe,Mn)OC-62O4), with overall Fe to Mn stoichiometry of 1:3, were formed. These final products were obtained regardless of the different atmospheres applied during thermal treatments up to 350 °C. Disordered bixbyite formed first with inhomogeneous Fe and Mn distribution and double-size supercell and then transformed gradually into common bixbyite with regular structure (and with 1:3 Fe to Mn ratio) upon increasing the temperature and heating time. The (Fe,Mn)Ox intermediates formed under various conditions showed catalytic effect in the CO2 hydrogenation reaction with <57.6% CO2 conversions and <39.3% hydrocarbon yields. As a mild solid-phase oxidant, hexakis(urea-O)iron(III) permanganate, was found to be selective in the transformation of (un)substituted benzylic alcohols into benzaldehydes and benzonitriles.

3.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209392

RESUMO

An aerial humidity-induced solid-phase hydrolytic transformation of the [Zn(NH3)4]MoO4@2H2O (compound 1@2H2O) with the formation of [(NH4)xH(1-x)Zn(OH)(MoO4)]n (x = 0.92-0.94) coordination polymer (formally NH4Zn(OH)MoO4, compound 2) is described. Based on the isostructural relationship, the powder XRD indicates that the crystal lattice of compound 1@2H2O contains a hydrogen-bonded network of tetraamminezinc (2+) and molybdate (2-) ions, and there are cavities (O4N4(µ-H12) cube) occupied by the two water molecules, which stabilize the crystal structure. Several observations indicate that the water molecules have no fixed positions in the lattice voids; instead, the cavity provides a neighborhood similar to those in clathrates. The @ symbol in the notation is intended to emphasize that the H2O in this compound is enclathrated rather than being water of crystallization. Yet, signs of temperature-dependent dynamic interactions with the wall of the cages can be detected, and 1@2H2O easily releases its water content even on standing and yields compound 2. Surprisingly, hydrolysis products of 1 were observed even in the absence of aerial humidity, which suggests a unique solid-phase quasi-intramolecular hydrolysis. A mechanism involving successive substitution of the ammonia ligands by water molecules and ammonia release is proposed. An ESR study of the Cu-doped compound 2 (2#dotCu) showed that this complex consists of two different Cu2+(Zn2+) environments in the polymeric structure. Thermal decomposition of compounds 1 and 2 results in ZnMoO4 with similar specific surface area and morphology. The ZnMoO4 samples prepared from compounds 1 and 2 and compound 2 in itself are active photocatalysts in the degradation of Congo Red dye. IR, Raman, and UV studies on compounds 1@2H2O and 2 are discussed in detail.

4.
Inorg Chem ; 60(6): 3749-3760, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647206

RESUMO

Two monoclinic polymorphs of [Ag(NH3)2]MnO4 containing a unique coordination mode of permanganate ions were prepared, and the high-temperature polymorph was used as a precursor to synthesize pure AgMnO2. The hydrogen bonds between the permanganate ions and the hydrogen atoms of ammonia were detected by IR spectroscopy and single-crystal X-ray diffraction. Under thermal decomposition, these hydrogen bonds induced a solid-phase quasi-intramolecular redox reaction between the [Ag(NH3)2]+ cation and MnO4- anion even before losing the ammonia ligand or permanganate oxygen atom. The polymorphs decomposed into finely dispersed elementary silver, amorphous MnOx compounds, and H2O, N2 and NO gases. Annealing the primary decomposition product at 573 K, the metallic silver reacted with the manganese oxides and resulted in the formation of amorphous silver manganese oxides, which started to crystallize only at 773 K and completely transformed into AgMnO2 at 873 K.

5.
RSC Adv ; 9(49): 28387-28398, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-35529631

RESUMO

Compounds containing redox active permanganate anions and complexed silver cations with reducing pyridine ligands are used not only as selective and mild oxidants in organic chemistry but as precursors for nanocatalyst synthesis in low-temperature solid-phase quasi-intramolecular redox reactions. Here we show a novel compound (4Agpy2MnO4·Agpy4MnO4) that has unique structural features including (1) four coordinated and one non-coordinated permanganate anion, (2) κ1O-permanganate coordinated Ag, (3) chain-like [Ag(py)2]+ units, (4) non-coordinated ionic permanganate ions and an [Ag(py)4]+ tetrahedra as well as (5) unsymmetrical hydrogen bonds between pyridine α-CHs and a permanganate oxygen. As a result of the oxidizing permanganate anion and reducing pyridine ligand, a highly exothermic reaction occurs at 85 °C. If the decomposition heat is absorbed by alumina or oxidation-resistant organic solvents (the solvent absorbs the heat to evaporate), the decomposition reaction proceeds smoothly and safely. During heating of the solid material, pyridine is partly oxidized into carbon dioxide and water; the solid phase decomposition end product contains mainly metallic Ag, Mn3O4 and some encapsulated carbon dioxide. Surprisingly, the enigmatic carbon-dioxide is an intercalated gas instead of the expected chemisorbed carbonate form. The title compound is proved to be a mild and efficient oxidant toward benzyl alcohols with an almost quantitative yield of benzaldehydes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...