Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 235(1): 41-51, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322882

RESUMO

We compiled hydrogen and oxygen stable isotope compositions (δ2 H and δ18 O) of leaf water from multiple biomes to examine variations with environmental drivers. Leaf water δ2 H was more closely correlated with δ2 H of xylem water or atmospheric vapour, whereas leaf water δ18 O was more closely correlated with air relative humidity. This resulted from the larger proportional range for δ2 H of meteoric waters relative to the extent of leaf water evaporative enrichment compared with δ18 O. We next expressed leaf water as isotopic enrichment above xylem water (Δ2 H and Δ18 O) to remove the impact of xylem water isotopic variation. For Δ2 H, leaf water still correlated with atmospheric vapour, whereas Δ18 O showed no such correlation. This was explained by covariance between air relative humidity and the Δ18 O of atmospheric vapour. This is consistent with a previously observed diurnal correlation between air relative humidity and the deuterium excess of atmospheric vapour across a range of ecosystems. We conclude that 2 H and 18 O in leaf water do indeed reflect the balance of environmental drivers differently; our results have implications for understanding isotopic effects associated with water cycling in terrestrial ecosystems and for inferring environmental change from isotopic biomarkers that act as proxies for leaf water.


Assuntos
Ecossistema , Água , Isótopos de Oxigênio/análise , Folhas de Planta/química , Xilema
2.
New Phytol ; 222(4): 1803-1815, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30740705

RESUMO

While photosynthetic isotope discrimination is well understood, the postphotosynthetic and transport-related fractionation mechanisms that influence phloem and subsequently tree ring δ13 C are less investigated and may vary among species. We studied the seasonal and diel courses of leaf-to-phloem δ13 C differences of water-soluble organic matter (WSOM) in vertical crown gradients and followed the assimilate transport via the branches to the trunk phloem at breast height in European beech (Fagus sylvatica) and Douglas fir (Pseudotsuga menziesii). δ13 C of individual sugars and cyclitols from a subsample was determined by compound-specific isotope analysis. In beech, leaf-to-phloem δ13 C differences in WSOM increased with height and were partly caused by biochemical isotope fractionation between leaf compounds. 13 C-Enrichment of phloem sugars relative to leaf sucrose implies an additional isotope fractionation mechanism related to leaf assimilate export. In Douglas fir, leaf-to-phloem δ13 C differences were much smaller and isotopically invariant pinitol strongly influenced leaf and phloem WSOM. Trunk phloem WSOM at breast height reflected canopy-integrated δ13 C in beech but not in Douglas fir. Our results demonstrate that leaf-to-phloem isotope fractionation and δ13 C mixing patterns along vertical gradients can differ between tree species. These effects have to be considered for functional interpretations of trunk phloem and tree ring δ13 C.


Assuntos
Isótopos de Carbono/metabolismo , Fagus/metabolismo , Floema/metabolismo , Folhas de Planta/metabolismo , Pseudotsuga/metabolismo , Fracionamento Químico , Ritmo Circadiano , Ciclitóis/metabolismo , Compostos Orgânicos/análise , Estações do Ano , Solubilidade , Açúcares/metabolismo , Fatores de Tempo
3.
Plant Cell Environ ; 40(7): 1086-1103, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28042668

RESUMO

Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ2 H and δ18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration.


Assuntos
Fagus/fisiologia , Folhas de Planta/fisiologia , Pseudotsuga/fisiologia , Deutério/metabolismo , Alemanha , Microclima , Modelos Biológicos , Isótopos de Oxigênio/metabolismo , Árvores , Água/metabolismo , Xilema/metabolismo
4.
Tree Physiol ; 32(3): 294-302, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22427372

RESUMO

Using an infrared camera, we measured the leaf temperature across different canopy positions of a 23-m-tall deciduous forest tree (Fagus sylvatica L.) including typical sun and shade leaves as well as intermediate leaf forms, which differed significantly in specific leaf area (SLA). We calculated a temperature index (I(G)) and a crop water stress index (CWSI) using the surface temperatures of wet and dry reference leaves. Additional indices were computed using air temperature plus 5 °C (I(G) + 5, CWSI + 5) as dry references. The minimum temperature of the wet leaf and the maximum temperature of the dry leaf proved to be most suitable as reference values. We correlated the temperature indices with leaf area-related conductance to water vapor (g(L)) using porometry at the leaf level and using xylem sap flow at the branch level. At the leaf and at the branch level, I(G) and CWSI were equally well suited as proxies of g(L), whereas the relationships of I(G) + 5 and CWSI + 5 with g(L) were only weak or even insignificant. At the leaf level, the correlations of I(G) and CWSI with g(L) were significant in all parts of the crown. The slopes of g(L) vs. I(G) and CWSI did not differ significantly among the crown parts; this indicates that they were not influenced by SLA or irradiance. At the branch level, close correlations (r > 0.8) were found between temperature indices and g(L) across the crown. These results demonstrate that satisfactory relationships between temperature indices and g(L) can be established in tall trees even in those canopy parts that are exposed to relatively low levels of irradiance and exhibit relatively low values of g(L).


Assuntos
Fagus/fisiologia , Transpiração Vegetal/fisiologia , Termografia/métodos , Desidratação , Fagus/efeitos da radiação , Alemanha , Umidade , Luz , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Transpiração Vegetal/efeitos da radiação , Temperatura , Termografia/instrumentação , Árvores/fisiologia , Árvores/efeitos da radiação , Água/fisiologia , Vento , Xilema/fisiologia , Xilema/efeitos da radiação
5.
Plant Cell Environ ; 35(7): 1245-57, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22292498

RESUMO

Combined δ(13) C and δ(18) O analyses of water-soluble leaf and twig phloem material were used to determine intrinsic water-use efficiency (iWUE) and variability of stomatal conductance at different crown positions in adult European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) trees. Simultaneous gas exchange measurements allowed evaluation of the differences in calculating iWUE from leaf or phloem water-soluble compounds, and comparison with a semi-quantitative dual isotope model to infer variability of net photosynthesis (A(n) ) between the investigated crown positions. Estimates of iWUE from δ(13) C of leaf water-soluble organic matter (WSOM) outperformed the estimates from phloem compounds. In the beech crown, δ(13) C of leaf WSOM coincided clearly with gas exchange measurements. The relationship was not as reliable in the Douglas-fir. The differences in δ(18) O between leaf and phloem material were found to correlate with stomatal conductance. The semi-quantitative model approach was applicable for comparisons of daily average A(n) between different crown positions and trees. Intracanopy gradients were more pronounced in the beech than in the Douglas-fir, which reached higher values of iWUE at the respective positions, particularly under dry air conditions.


Assuntos
Modelos Biológicos , Floema/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal , Isótopos de Carbono/análise , Fagus/fisiologia , Isótopos de Oxigênio/análise , Fotossíntese , Estômatos de Plantas/fisiologia , Pseudotsuga/fisiologia , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...