Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(9): e0204461, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30256819

RESUMO

Forest lands hold great potential for Populus plantations, but in native boreal forests, soils normally have low pH and thus higher levels of aluminum ions (Al3+ and hydroxides). Aluminum (Al) is one of the major factors limiting plant growth on these soils by inhibiting root growth, thus reducing water and nutrient uptake and slowing growth. There is a large variation in Al resistance both among and within species. In this study, growth responses of greenhouse-grown hybrid aspen (P. tremula × tremuloides) and poplar (P. trichocarpa hybrids) were monitored in relation to changes in Al concentrations. In quartz sand, hybrid aspen was more tolerant to exogenous application of Al than P. trichocarpa hybrids. This difference in Al-tolerance was further confirmed by hematoxylin staining of the roots, with hybrid aspen displaying less staining after Al treatment than poplar clones. When planted on forest land with low pH, hybrid aspen increased growth after planting and showed low mortality. This was not the case for poplar clones; plant height decreased after planting and mortality increased. Together, our results suggest that differences in initial growth and survival on forest land among hybrid aspen and the tested poplar clones may be connected to differences in Al tolerance. Our findings that staining with hematoxylin can identify Al-tolerant Populus genotypes may help identify Al-tolerant genotypes suitable for forest land.


Assuntos
Alumínio/farmacologia , Florestas , Genótipo , Populus/efeitos dos fármacos , Populus/genética , Solo/química , Alumínio/análise , Relação Dose-Resposta a Droga , Efeito Estufa , Concentração de Íons de Hidrogênio , Populus/crescimento & desenvolvimento
2.
New Phytol ; 218(4): 1491-1503, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29532940

RESUMO

Survival of trees growing in temperate zones requires cycling between active growth and dormancy. This involves growth cessation in the autumn triggered by a photoperiod shorter than the critical day length. Variations in GIGANTEA (GI)-like genes have been associated with phenology in a range of different tree species, but characterization of the functions of these genes in the process is still lacking. We describe the identification of the Populus orthologs of GI and their critical role in short-day-induced growth cessation. Using ectopic expression and silencing, gene expression analysis, protein interaction and chromatin immunoprecipitation experiments, we show that PttGIs are likely to act in a complex with PttFKF1s (FLAVIN-BINDING, KELCH REPEAT, F-BOX 1) and PttCDFs (CYCLING DOF FACTOR) to control the expression of PttFT2, the key gene regulating short-day-induced growth cessation in Populus. In contrast to Arabidopsis, in which the GI-CONSTANS (CO)-FLOWERING LOCUS T (FT) regulon is a crucial day-length sensor for flowering time, our study suggests that, in Populus, PttCO-independent regulation of PttFT2 by PttGI is more important in the photoperiodic control of growth cessation and bud set.


Assuntos
Genes de Plantas , Proteínas de Plantas/genética , Populus/crescimento & desenvolvimento , Populus/genética , Estações do Ano , Ritmo Circadiano/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Proteínas de Plantas/metabolismo , Ligação Proteica , Interferência de RNA , Árvores/genética , Árvores/crescimento & desenvolvimento , Regulação para Cima/genética
3.
J Exp Bot ; 68(21-22): 5731-5743, 2017 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-29237056

RESUMO

Many filamentous plant pathogens place specialized feeding structures, called haustoria, inside living host cells. As haustoria grow, they are believed to manipulate plant cells to generate a specialized, still enigmatic extrahaustorial membrane (EHM) around them. Here, we focused on revealing properties of the EHM. With the help of membrane-specific dyes and transient expression of membrane-associated proteins fused to fluorescent tags, we studied the nature of the EHM generated by barley leaf epidermal cells around powdery mildew haustoria. Observations suggesting that endoplasmic reticulum (ER) membrane-specific dyes labelled the EHM led us to find that Sar1 and RabD2a GTPases bind this membrane. These proteins are usually associated with the ER and the ER/cis-Golgi membrane, respectively. In contrast, transmembrane and luminal ER and Golgi markers failed to label the EHM, suggesting that it is not a continuum of the ER. Furthermore, GDP-locked Sar1 and a nucleotide-free RabD2a, which block ER to Golgi exit, did not hamper haustorium formation. These results indicated that the EHM shares features with the plant ER membrane, but that the EHM membrane is not dependent on conventional secretion. This raises the prospect that an unconventional secretory pathway from the ER may provide this membrane's material. Understanding these processes will assist future approaches to providing resistance by preventing EHM generation.


Assuntos
Ascomicetos/fisiologia , Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Retículo Endoplasmático , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 109(28): 11443-8, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733775

RESUMO

Penetration resistance to powdery mildew fungi, conferred by localized cell wall appositions (papillae), is one of the best-studied processes in plant innate immunity. The syntaxin PENETRATION (PEN)1 is required for timely appearance of papillae, which contain callose and extracellular membrane material, as well as PEN1 itself. Appearance of membrane material in papillae suggests secretion of exosomes. These are potentially derived from multivesicular bodies (MVBs), supported by our observation that ARA6-labeled organelles assemble at the fungal attack site. However, the trafficking components that mediate delivery of extracellular membrane material are unknown. Here, we show that the delivery is independent of PEN1 function. Instead, we find that application of brefeldin (BF)A blocks the papillary accumulation of GFP-PEN1-labeled extracellular membrane and callose, while impeding penetration resistance. We subsequently provide evidence indicating that the responsible BFA-sensitive ADP ribosylation factor-GTP exchange factor (ARF-GEF) is GNOM. Firstly, analysis of the transheterozygote gnom(B4049/emb30-1) (gnom(B)(/E)) mutant revealed a delay in papilla formation and reduced penetration resistance. Furthermore, a BFA-resistant version of GNOM restored the BFA-sensitive papillary accumulation of GFP-PEN1 and callose. Our data, therefore, provide a link between GNOM and disease resistance. We suggest that papilla formation requires rapid reorganization of material from the plasma membrane mediated by GNOM. The papilla material is subsequently presumed to be sorted into MVBs and directed to the site of fungal attack, rendering the epidermal plant cell inaccessible for the invading powdery mildew fungus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteínas Qa-SNARE/metabolismo , Transporte Biológico , Brefeldina A/farmacologia , Exossomos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Regulação Fúngica da Expressão Gênica , Glucanos/química , Heterozigoto , Imunidade Inata , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Modelos Biológicos
5.
Plant Cell ; 22(11): 3831-44, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21057060

RESUMO

Host cell vesicle traffic is essential for the interplay between plants and microbes. ADP-ribosylation factor (ARF) GTPases are required for vesicle budding, and we studied the role of these enzymes to identify important vesicle transport pathways in the plant-powdery mildew interaction. A combination of transient-induced gene silencing and transient expression of inactive forms of ARF GTPases provided evidence that barley (Hordeum vulgare) ARFA1b/1c function is important for preinvasive penetration resistance against powdery mildew, manifested by formation of a cell wall apposition, named a papilla. Mutant studies indicated that the plasma membrane-localized REQUIRED FOR MLO-SPECIFIED RESISTANCE2 (ROR2) syntaxin, also important for penetration resistance, and ARFA1b/1c function in the same vesicle transport pathway. This was substantiated by a requirement of ARFA1b/1c for ROR2 accumulation in the papilla. ARFA1b/1c is localized to multivesicular bodies, providing a functional link between ROR2 and these organelles in penetration resistance. During Blumeria graminis f sp hordei penetration attempts, ARFA1b/1c-positive multivesicular bodies assemble near the penetration site hours prior to the earliest detection of callose in papillae. Moreover, we showed that ARFA1b/1c is required for callose deposition in papillae and that the papilla structure is established independently of ARFA1b/1c. This raises the possibility that callose is loaded into papillae via multivesicular bodies, rather than being synthesized directly into this cell wall apposition.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Glucanos/metabolismo , Hordeum/imunologia , Corpos Multivesiculares/enzimologia , Proteínas de Plantas/metabolismo , Proteínas Qa-SNARE/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Fatores de Ribosilação do ADP/classificação , Fatores de Ribosilação do ADP/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Endossomos/metabolismo , Inativação Gênica , Hordeum/anatomia & histologia , Hordeum/microbiologia , Filogenia , Doenças das Plantas/imunologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/enzimologia , Proteínas de Plantas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
6.
BMC Genomics ; 11: 317, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20487537

RESUMO

BACKGROUND: Powdery mildew and rust fungi are widespread, serious pathogens that depend on developing haustoria in the living plant cells. Haustoria are separated from the host cytoplasm by a plant cell-derived extrahaustorial membrane. They secrete effector proteins, some of which are subsequently transferred across this membrane to the plant cell to suppress defense. RESULTS: In a cDNA library from barley epidermis containing powdery mildew haustoria, two-thirds of the sequenced ESTs were fungal and represented approximately 3,000 genes. Many of the most highly expressed genes encoded small proteins with N-terminal signal peptides. While these proteins are novel and poorly related, they do share a three-amino acid motif, which we named "Y/F/WxC", in the N-terminal of the mature proteins. The first amino acid of this motif is aromatic: tyrosine, phenylalanine or tryptophan, and the last is always cysteine. In total, we identified 107 such proteins, for which the ESTs represent 19% of the fungal clones in our library, suggesting fundamental roles in haustoria function. While overall sequence similarity between the powdery mildew Y/F/WxC-proteins is low, they do have a highly similar exon-intron structure, suggesting they have a common origin. Interestingly, searches of public fungal genome and EST databases revealed that haustoria-producing rust fungi also encode large numbers of novel, short proteins with signal peptides and the Y/F/WxC-motif. No significant numbers of such proteins were identified from genome and EST sequences from either fungi which do not produce haustoria or from haustoria-producing Oomycetes. CONCLUSION: In total, we identified 107, 178 and 57 such Y/F/WxC-proteins from the barley powdery mildew, the wheat stem rust and the wheat leaf rust fungi, respectively. All together, our findings suggest the Y/F/WxC-proteins to be a new class of effectors from haustoria-producing pathogenic fungi.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Motivos de Aminoácidos , Ascomicetos/classificação , Ascomicetos/metabolismo , Sequência Conservada , Etiquetas de Sequências Expressas , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Filogenia , Folhas de Planta/fisiologia , Sinais Direcionadores de Proteínas/genética , Triticum/microbiologia
7.
Science ; 316(5823): 367, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17446370
8.
Plant Cell ; 18(9): 2172-81, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16920780

RESUMO

Flower initiation in Arabidopsis thaliana under noninductive short-day conditions is dependent on the biosynthesis of the plant hormone gibberellin (GA). This dependency can be explained, at least partly, by GA regulation of the flower meristem identity gene LEAFY (LFY) and the flowering time gene SUPPRESSOR OF CONSTANS1. Although it is well established that GA(4) is the active GA in the regulation of Arabidopsis shoot elongation, the identity of the GA responsible for the regulation of Arabidopsis flowering has not been established. Through a combination of GA quantifications and sensitivity assays, we show that GA(4) is the active GA in the regulation of LFY transcription and Arabidopsis flowering time under short-day conditions. The levels of GA(4) and sucrose increase dramatically in the shoot apex shortly before floral initiation, and the regulation of genes involved in GA metabolism suggests that this increase is possibly due to transport of GAs and sucrose from outside sources to the shoot apex. Our results demonstrate that in the dicot Arabidopsis, in contrast with the monocot Lolium temulentum, GA(4) is the active GA in the regulation of both shoot elongation and flower initiation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/fisiologia , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Giberelinas/classificação , Giberelinas/metabolismo , Glucuronidase/análise , Luz , Fotoperíodo , Proteínas Recombinantes de Fusão/análise , Sacarose/metabolismo , Fatores de Transcrição/metabolismo
9.
Science ; 312(5776): 1040-3, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16675663

RESUMO

Forest trees display a perennial growth behavior characterized by a multiple-year delay in flowering and, in temperate regions, an annual cycling between growth and dormancy. We show here that the CO/FT regulatory module, which controls flowering time in response to variations in daylength in annual plants, controls flowering in aspen trees. Unexpectedly, however, it also controls the short-day-induced growth cessation and bud set occurring in the fall. This regulatory mechanism can explain the ecogenetic variation in a highly adaptive trait: the critical daylength for growth cessation displayed by aspen trees sampled across a latitudinal gradient spanning northern Europe.


Assuntos
Flores/genética , Fotoperíodo , Proteínas de Plantas/genética , Populus/genética , Estações do Ano , Árvores/genética , Adaptação Fisiológica/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Alemanha , Fitocromo A/genética , Fitocromo A/fisiologia , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Populus/crescimento & desenvolvimento , Suécia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Árvores/crescimento & desenvolvimento
10.
Science ; 309(5741): 1694-6, 2005 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-16099949

RESUMO

Day length controls flowering time in many plants. The day-length signal is perceived in the leaf, but how this signal is transduced to the shoot apex, where floral initiation occurs, is not known. In Arabidopsis, the day-length response depends on the induction of the FLOWERING LOCUS T (FT) gene. We show here that local induction of FT in a single Arabidopsis leaf is sufficient to trigger flowering. The FT messenger RNA is transported to the shoot apex, where downstream genes are activated. These data suggest that the FT mRNA is an important component of the elusive "florigen" signal that moves from leaf to shoot apex.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/genética , Temperatura Alta , Proteínas de Domínio MADS , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...