Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(13)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266158

RESUMO

Nature successfully employs inorganic solid-state materials (i.e., biominerals) and hierarchical composites as sensing elements, weapons, tools, and shelters. Optimized over hundreds of millions of years under evolutionary pressure, these materials are exceptionally well adapted to the specifications of the functions that they perform. As such, they serve today as an extensive library of engineering solutions. Key to their design is the interplay between components across length scales. This hierarchical design-a hallmark of biogenic materials-creates emergent functionality not present in the individual constituents and, moreover, confers a distinctly increased functional density, i.e., less material is needed to provide the same performance. The latter aspect is of special importance today, as climate change drives the need for the sustainable and energy-efficient production of materials. Made from mundane materials, these bioceramics act as blueprints for new concepts in the synthesis and morphosynthesis of multifunctional hierarchical materials under mild conditions. In this review, which also may serve as an introductory guide for those entering this field, we demonstrate how the pursuit of studying biomineralization transforms and enlarges our view on solid-state material design and synthesis, and how bioinspiration may allow us to overcome both conceptual and technical boundaries.

2.
Materials (Basel) ; 12(10)2019 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31109027

RESUMO

The remarkable mechanical performance of biominerals often relies on distinct crystallographic textures, which complicate the determination of the nanohardness from indentations with the standard non-rotational-symmetrical Berkovich punch. Due to the anisotropy of the biomineral to be probed, an azimuthal dependence of the hardness arises. This typically increases the standard deviation of the reported hardness values of biominerals and impedes comparison of hardness values across the literature and, as a result, across species. In this paper, we demonstrate that an azimuthally independent nanohardness determination can be achieved by using a conical indenter. It is also found that conical and Berkovich indentations yield slightly different hardness values because they result in different pile-up behaviors and because of technical limitations on the fabrication of perfectly equivalent geometries. For biogenic crystals, this deviation of hardness values between indenters is much lower than the azimuthal variation in non-rotational-symmetrical Berkovich indentations.

3.
Sci Adv ; 4(3): eaar3219, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725615

RESUMO

Avian (and formerly dinosaur) eggshells form a hard, protective biomineralized chamber for embryonic growth-an evolutionary strategy that has existed for hundreds of millions of years. We show in the calcitic chicken eggshell how the mineral and organic phases organize hierarchically across different length scales and how variation in nanostructure across the shell thickness modifies its hardness, elastic modulus, and dissolution properties. We also show that the nanostructure changes during egg incubation, weakening the shell for chick hatching. Nanostructure and increased hardness were reproduced in synthetic calcite crystals grown in the presence of the prominent eggshell protein osteopontin. These results demonstrate the contribution of nanostructure to avian eggshell formation, mechanical properties, and dissolution.


Assuntos
Carbonato de Cálcio/química , Galinhas/metabolismo , Casca de Ovo/química , Fenômenos Mecânicos , Nanoestruturas/química , Osteopontina/química , Animais , Casca de Ovo/ultraestrutura , Nanoestruturas/ultraestrutura , Osteopontina/ultraestrutura , Difração de Raios X
4.
Interface Focus ; 7(4): 20160120, 2017 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630670

RESUMO

Biominerals are typically indispensable structures for their host organism in which they serve varying functions, such as mechanical support and protection, mineral storage, detoxification site, or as a sensor or optical guide. In this perspective article, we highlight the occurrence of both structural diversity and uniformity within these biogenic ceramics. For the first time, we demonstrate that the universality-diversity paradigm, which was initially introduced for proteins by Buehler et al. (Cranford & Buehler 2012 Biomateriomics; Cranford et al. 2013 Adv. Mater.25, 802-824 (doi:10.1002/adma.201202553); Ackbarow & Buehler 2008 J. Comput. Theor. Nanosci.5, 1193-1204 (doi:10.1166/jctn.2008.001); Buehler & Yung 2009 Nat. Mater.8, 175-188 (doi:10.1038/nmat2387)), is also valid in the realm of biomineralization. A nanogranular composite structure is shared by most biominerals which rests on a common, non-classical crystal growth mechanism. The nanogranular composite structure affects various properties of the macroscale biogenic ceramic, a phenomenon we attribute to emergence. Emergence, in turn, is typical for hierarchically organized materials. This is a clear call to renew comparative studies of even distantly related biomineralizing organisms to identify further universal design motifs and their associated emergent properties. Such universal motifs with emergent macro-scale properties may represent an unparalleled toolbox for the efficient design of bioinspired functional materials.

5.
J Struct Biol ; 196(2): 244-259, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27456365

RESUMO

A distinct nanogranular fine structure is shared by a wealth of biominerals from several species, classes and taxa. This nanoscopic organization affects the properties and behavior of the biogenic ceramic material and confers on them attributes that are essential to their function. We present a set of structure-relationship properties that are rooted in the nanogranular organization and we propose that they rest on a common pathway of formation, a colloid-driven and hence nonclassical mode of crystallization. With this common modus operandi, we reveal the most fundamental and wide spread process-structure-property relationship in biominerals. With the recent increase in our understanding of nonclassical crystallization in vitro and in vivo, this significant process-structure-property relationship will serve as a source for new design approaches of bio-inspired materials.


Assuntos
Minerais/metabolismo , Nanopartículas/química , Animais , Calcificação Fisiológica , Coloides , Cristalização , Minerais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...