Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 210(4): 1185-1196, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30257934

RESUMO

Thousands of maize landraces are stored in seed banks worldwide. Doubled-haploid libraries (DHL) produced from landraces harness their rich genetic diversity for future breeding. We investigated the prospects of genomic prediction (GP) for line per se performance in DHL from six European landraces and 53 elite flint (EF) lines by comparing four scenarios: GP within a single library (sL); GP between pairs of libraries (LwL); and GP among combined libraries, either including (cLi) or excluding (cLe) lines from the training set (TS) that belong to the same DHL as the prediction set. For scenario sL, with N = 50 lines in the TS, the prediction accuracy (ρ) among seven agronomic traits varied from -0.53 to 0.57 for the DHL and reached up to 0.74 for the EF lines. For LwL, ρ was close to zero for all DHL and traits. Whereas scenario cLi showed improved ρ values compared to sL, ρ for cLe remained at the low level observed for LwL. Forecasting ρ with deterministic equations yielded inflated values compared to empirical estimates of ρ for the DHL, but conserved the ranking. In conclusion, GP is promising within DHL, but large TS sizes (N > 100) are needed to achieve decent prediction accuracy because LD between QTL and markers is the primary source of information that can be exploited by GP. Since production of DHL from landraces is expensive, we recommend GP only for very large DHL produced from a few highly preselected landraces.


Assuntos
Variação Genética/genética , Genoma de Planta/genética , Genômica , Zea mays/genética , Genótipo , Haploidia , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Melhoramento Vegetal , Seleção Genética
2.
Theor Appl Genet ; 130(5): 861-873, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28194473

RESUMO

KEY MESSAGE: Using landraces for broadening the genetic base of elite maize germplasm is hampered by heterogeneity and high genetic load. Production of DH line libraries can help to overcome these problems. Landraces of maize (Zea mays L.) represent a huge reservoir of genetic diversity largely untapped by breeders. Genetic heterogeneity and a high genetic load hamper their use in hybrid breeding. Production of doubled haploid line libraries (DHL) by the in vivo haploid induction method promises to overcome these problems. To test this hypothesis, we compared the line per se performance of 389 doubled haploid (DH) lines across six DHL produced from European flint landraces with that of four flint founder lines (FFL) and 53 elite flint lines (EFL) for 16 agronomic traits evaluated in four locations. The genotypic variance ([Formula: see text]) within DHL was generally much larger than that among DHL and exceeded also [Formula: see text] of the EFL. For most traits, the means and [Formula: see text] differed considerably among the DHL, resulting in different expected selection gains. Mean grain yield of the EFL was 25 and 62% higher than for the FFL and DHL, respectively, indicating considerable breeding progress in the EFL and a remnant genetic load in the DHL. Usefulness of the best 20% lines was for individual DHL comparable to the EFL and grain yield (GY) in the top lines from both groups was similar. Our results corroborate the tremendous potential of landraces for broadening the narrow genetic base of elite germplasm. To make best use of these "gold reserves", we propose a multi-stage selection approach with optimal allocation of resources to (1) choose the most promising landraces for DHL production and (2) identify the top DH lines for further breeding.


Assuntos
Variação Genética , Haploidia , Zea mays/genética , Produtos Agrícolas/genética , Cruzamentos Genéticos , Genótipo , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...