Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38949281

RESUMO

Large-amplitude thermal excursions imposed on deeply supercooled liquids modulate the nonlinear time evolution of their structural rearrangements. The consequent aftereffects are treated within a Wiener-Volterra expansion in laboratory time that allows one to calculate the associated physical-aging and thermal response functions. These responses and the corresponding higher-harmonic susceptibilities are illustrated using calculations based on the Tool-Narayanaswamy-Moynihan (TNM) model. The conversion from laboratory to material time is thoroughly discussed. Similarities and differences to field-induced higher-harmonic susceptibilities are illustrated using Lissajous and Cole-Cole plots and discussed in terms of aging nonlinearity parameters. For the Lissajous plots, banana-type shapes emerge, while the Cole-Cole plots display cardioidic and other visually appealing patterns. For application beyond the regime in which conventional single-parameter aging concepts work, the Wiener-Volterra material-time-series is introduced as the central tool. Calculations and analyses within this general framework in conjunction with suitable choices of higher-order memory kernels and employing correspondingly extended TNM models yield at least qualitative agreement with recent large-perturbation physical aging experiments. Implications for differential scanning calorimetry and related methods are discussed. The introduced concepts and analyses provide a solid foundation for a generalized description of nonlinear thermal out-of-equilibrium dynamics of glass forming materials, differing from the nonlinear responses known from rheology and dielectric spectroscopy.

2.
J Chem Phys ; 160(24)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38934633

RESUMO

Ice XIX and ice XV are both partly hydrogen-ordered counterparts to disordered ice VI. The ice XIX → XV transition represents the only order-to-order transition in ice physics. Using Raman and dielectric spectroscopies, we investigate the ambient-pressure kinetics of the two individual steps in this transition in real time (of hours), that is, ice XIX → transient ice VI (the latter called VI‡) and ice VI‡ → ice XV. Hydrogen-disordered ice VI‡ appears intermittent between 101 and 120 K, as inferred from the appearance and subsequent disappearance of the ice VI Raman marker bands. A comparison of the rate constants for the H2O ices reported here with those from D2O samples [Thoeny et al., J. Chem. Phys. 156, 154507 (2022)] reveals a large kinetic isotope effect for the ice XIX decay, but a much smaller one for the ice XV buildup. An enhancement of the classical overbarrier rate through quantum tunneling for the former can provide a possible explanation for this finding. The activation barriers for both transitions are in the 18-24 kJ/mol range, which corresponds to the energy required to break a single hydrogen bond. These barriers do not show an H/D isotope effect and are the same, no matter whether they are derived from Raman scattering or from dielectric spectroscopy. These findings favor the notion that a dipolar reorientation, involving the breakage of a hydrogen bond, is the rate determining step at the order-to-order transition.

3.
Phys Chem Chem Phys ; 26(17): 13219-13229, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634288

RESUMO

The present work focuses on the dynamics of the ionic constituents of 1-propyl-3-methyl-imidazolium-bis-(trifluormethylsulfonyl)-imide (PT), a paradigmatic ionic liquid, as an additive in poly(vinylpyrrolidone) (PVP). Hence, the resulting product can be regarded as a polymer electrolyte as well as an amorphous dispersion. Leveraging dielectric spectroscopy and oscillatory shear rheology, complemented by differential scanning calorimetry, the spectral shapes and the relaxation maps of the supercooled PVP-PT mixtures are accessed in their full compositional range. The study also presents dielectric and shear responses of neat PVP with a molecular weight of 2500 g mol-1. We discuss the plasticizing role of the PT additive and the decoupling between ionic dynamics and segmental relaxation in these mixtures. The extracted relaxation times, steady-state viscosities, and conductivities are employed to estimate the translational diffusivities of the ionic penetrants by means of the Stokes-Einstein, Nernst-Einstein, and Almond-West relations. While some of the estimated diffusivities agree with each other, some do not, pointing to the importance of the chosen hydrodynamic approximations and the type of response considered for the analysis. The present extensive dielectric, rheological, and calorimetric study enables a deeper understanding of relaxation and transport of ionic ingredients in polymers, particularly in the slow-dynamics regime which is difficult to access experimentally by direct-diffusivity probes.

4.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38411232

RESUMO

Glutaronitrile (GN) doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) at concentrations below and above the room-temperature conductivity optimum near 1M of Li salt is investigated using dielectric spectroscopy and shear rheology. The experiments are carried out from ambient down to the glass transition temperature Tg, which increases considerably as LiTFSI is admixed to GN. As the temperature is lowered, the conductivity optimum shifts to lower salt concentrations, while the power-law exponents connecting resistivity and molecular reorientation time remain smallest for the 1M composition. By contrast, the rheologically detected time constants, as well as those obtained using dielectric spectroscopy, increase monotonically with increasing Li salt concentration for all temperatures. It is demonstrated that the shear mechanical measurements are, nevertheless, sensitive to the 1M conductivity optimum, thus elucidating the interplay of the dinitrile matrix with the mobile species. The data for the Li doped GN and other nitrile solvents all follow about the same Walden line, in harmony with their highly conductive character. The composition dependent relation between the ionic and the reorientational dynamics is also elucidated.

5.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38078520

RESUMO

A high-resolution, temperature oscillation-based probe of physical aging in complex systems is introduced. The Fourier analysis of the measured responses allows one to extract high-order, aging-related nonlinearities that are not accessible via traditional temperature-jump and temperature-ramp procedures. To demonstrate the potential of this oscillatory approach, we analyze the periodic time evolution of glycerol's structural relaxation using shear rheology as a vehicle. Thereby, we access up to the sixth harmonic and detect aging fingerprints within a resolution range of three orders of magnitude for temperature amplitudes of up to 4 K. The even harmonics are present since aging is not symmetrical with respect to the direction of temperature change. The high-order aging coefficients obtained for glycerol are described reasonably well within the Tool-Narayanaswamy-Moynihan formalism.

6.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38078531

RESUMO

Using deuteron spin-lattice and spin-spin relaxometry, the reorientational dynamics of ethaline (choline chloride/ethylene glycol) and reline (choline chloride/urea) are studied in a component-selective, isotope-edited manner over a wide temperature range, thereby complementing previous work on glyceline (choline chloride/glycerol). Differences in the hydrogen bond propensities effectuate that in reline and glyceline, the choline ions move faster than the hydrogen bond donors, glycerol and urea; in ethaline, the ethylene glycol molecules are reorienting faster. For glyceline and reline, the increase in the corresponding time scale ratio indicates a pronounced strengthening of the glycerol and urea networks upon cooling, while in ethaline, the time scale ratio remains essentially constant. For the three deep eutectic solvents, a comparison of the present component-selective results with the dielectric time constants shows that the latter are primarily sensitive to the dynamics of the respective hydrogen bond donors. In a Walden-type plot, the reorientation rates, selectively determined for the hydrogen bond donors and acceptors, are compared with their conductivity and fluidity, revealing that the dynamics of the choline ions relate most directly to the charge transport.

7.
Phys Chem Chem Phys ; 25(41): 28130-28140, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37818622

RESUMO

Chlorine-35 is among the few nuclides that provide an experimental handle on the anion dynamics in choline based deep eutectic solvents. By combining several nuclear magnetic resonance (NMR) techniques, the present work examines the Cl- motions within glyceline, a glycerol : choline chloride 2 : 1 solution, in a large temperature range down to the glass transition temperature Tg. The applied methods include spin relaxometry, second-order line shape analysis, as well as two-dimensional central-transition exchange and stimulated-echo spectroscopy. The finding of unstructured central-transition NMR spectra characterized by a relatively small average quadrupolar coupling attests to a highly disordered, essentially nondirectional anionic coordination in glyceline. For temperatures larger than about 1.3Tg the chlorine motions are well coupled to those of the glycerol and the choline moieties. At lower temperatures the local translational anion dynamics become Arrhenian and increasingly faster than the motion of glyceline's matrix molecules. Upon further cooling, the overall ionic conductivity continues to display a super-Arrhenius behavior, implying that the choline cations rather than the Cl anions dominate the long-range charge transport also near Tg.

8.
Phys Chem Chem Phys ; 25(35): 24042-24059, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37654228

RESUMO

Solvated in propylene carbonate, viscous phenol is studied using dielectric spectroscopy and shear rheology. In addition, several oxygen-17 and deuteron nuclear magnetic resonance (NMR) techniques are applied to specifically isotope labeled equimolar mixtures. Quantum chemical calculations are used to check the electrical field gradient at phenol's oxygen site. The chosen combination of NMR methods facilitates the selective examination of potentially hydrogen-bond related contributions as well as those dominated by the structural relaxation. Taken together the present results for phenol in equimolar mixtures with the van der Waals liquid propylene carbonate provide evidence for the existence of a very weak Debye-like process that originates from ringlike supramolecular associates.

9.
Mol Pharm ; 20(4): 2067-2079, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930788

RESUMO

The main goal of this study is to develop an experimental toolbox to estimate the self-diffusion coefficient of active ingredients (AI) in single-phase amorphous solid dispersions (ASD) close to the glass transition of the mixture using dielectric spectroscopy (DS) and oscillatory rheology. The proposed methodology is tested for a model system containing the insecticide imidacloprid (IMI) and the copolymer copovidone (PVP/VA) prepared via hot-melt extrusion. For this purpose, reorientational and the viscoelastic structural (α-)relaxation time constants of hot-melt-extruded ASDs were obtained via DS and shear rheology, respectively. These were then utilized to extract the viscosity as well as the fragility index of the dispersions as input parameters to the fractional Stokes-Einstein (F-SE) relation. Furthermore, a modified version of Almond-West (AW) formalism, originally developed to describe charge diffusion in ionic conductors, was exercised on the present model system for the estimation of the AI diffusion coefficients based on shear modulus relaxation times. Our results revealed that, at the calorimetric glass-transition temperature (Tg), the self-diffusion coefficients of the AI in the compositional range from infinite dilution up to 60 wt % IMI content lied in the narrow range of 10-18-10-20 m2 s-1, while the viscosity values of the dispersions at Tg varied between 108 Pa s and 1010 Pa s. In addition, the phase diagram of the IMI-PVP/VA system was determined using the melting point depression method via differential scanning calorimetry (DSC), while mid-infrared (IR) spectroscopy was employed to investigate the intermolecular interactions within the solid dispersions. In this respect, the findings of a modest variation in melting point at different compositions stayed in agreement with the observations of weak hydrogen bonding interactions between the AI and the polymer. Moreover, IR spectroscopy showed the intermolecular IMI-IMI hydrogen bonding to have been considerably suppressed, as a result of the spatial separation of the AI molecules within the ASDs. In summary, this study provides experimental approaches to study diffusivity in ASDs using DS and oscillatory rheology, in addition to contributing to an enhanced understanding of the interactions and phase behavior in these systems.


Assuntos
Simulação de Dinâmica Molecular , Polímeros , Polímeros/química , Temperatura , Neonicotinoides , Varredura Diferencial de Calorimetria , Solubilidade , Composição de Medicamentos/métodos
10.
Mol Pharm ; 20(4): 2080-2093, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897219

RESUMO

Amorphous-Amorphous phase separation (AAPS) is an important phenomenon that can impede the performance of amorphous solid dispersions (ASDs). The purpose of this study was to develop a sensitive approach relying on dielectric spectroscopy (DS) to characterize AAPS in ASDs. This includes detecting AAPS, determining the size of the active ingredient (AI) discrete domains in the phase-separated systems, and accessing the molecular mobility in each phase. Using a model system consisting of the insecticide imidacloprid (IMI) and the polymer polystyrene (PS), the dielectric results were further confirmed by confocal fluorescence microscopy (CFM). The detection of AAPS by DS was accomplished by identifying the decoupled structural (α-)dynamics of the AI and the polymer phase. The α-relaxation times corresponding to each phase correlated reasonably well with those of the pure components, implying nearly complete macroscopic phase separation. Congruent with the DS results, the occurrence of the AAPS was detected by means of CFM, making use of the autofluorescent property of IMI. Oscillatory shear rheology and differential scanning calorimetry (DSC) detected the glass transition of the polymer phase but not that of the AI phase. Furthermore, the otherwise undesired effects of interfacial and electrode polarization, which can appear in DS, were exploited to determine the effective domain size of the discrete AI phase in this work. Here, stereological analysis of CFM images probing the mean diameter of the phase-separated IMI domains directly stayed in reasonably good agreement with the DS-based estimates. The size of phase-separated microclusters showed little variation with AI loading, implying that the ASDs have presumably undergone AAPS upon manufacturing. DSC provided further support to the immiscibility of IMI and PS, as no discernible melting point depression of the corresponding physical mixtures was detected. Moreover, no signatures of strong attractive AI-polymer interactions could be detected by mid-infrared spectroscopy within this ASD system. Finally, dielectric cold crystallization experiments of the pure AI and the 60 wt % dispersion revealed comparable crystallization onset times, hinting at a poor inhibition of the AI crystallization within the ASD. These observations are in harmony with the occurrence of AAPS. In conclusion, our multifaceted experimental approach opens new venues for rationalizing the mechanisms and kinetics of phase separation in amorphous solid dispersions.


Assuntos
Nitrocompostos , Polímeros , Cristalização/métodos , Polímeros/química , Neonicotinoides , Solubilidade , Varredura Diferencial de Calorimetria
11.
J Chem Phys ; 157(23): 231101, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36550030

RESUMO

Currently, there is a debate whether the structural relaxation of polar liquids is more faithfully reflected (i) by the generically shaped response detected by dynamic light scattering or rather (ii) by the slower, more stretched, system-dependent susceptibility response recorded by dielectric spectroscopy. In this work, nonlinearly induced transients probing structural relaxation reveal that near the glass transition, alternative (ii) is appropriate for propylene glycol. Results from shear rheology and from calorimetry corroborate this finding, underscoring the previously advanced notion (Moch et al., Phys. Rev. Lett. 128, 228001, 2022) that the reorientationally probed structural susceptibility of viscous liquids displays a nongeneric spectral shape.


Assuntos
Espectroscopia Dielétrica , Propilenoglicol , Calorimetria , Difusão Dinâmica da Luz , Reologia
12.
J Chem Phys ; 156(19): 194506, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597634

RESUMO

Glyceline, a green solvent considered for various electrochemical applications, represents a multi-component glass former. Viewed from this perspective, the choline cation and the hydrogen bond donor glycerol, the two major constituents forming this deep eutectic solvent, were studied using nuclear magnetic resonance in a selective manner by means of suitably deuteron-labeled isotopologues. Carried out from far above to far below the glass transition temperature, measurements and analyses of the spin-lattice and spin-spin relaxation times reveal that the reorientational dynamics of the components, i.e., of glycerol as well as of chain deuterated choline chloride are slightly different. Possible implications of this finding regarding the hydrogen-bonding pattern in glyceline are discussed. Furthermore, the deuterated methyl groups in choline chloride are exploited as sensitive probes of glyceline's supercooled and glassy states. Apart from spin relaxometry, a detailed line shape analysis of the CD3 spectra yields valuable insights into the broad intermolecular and intramolecular energy barrier distributions present in this binary mixture.


Assuntos
Colina , Glicerol , Colina/química , Solventes Eutéticos Profundos , Deutério , Glicerol/química , Espectroscopia de Ressonância Magnética , Solventes/química
13.
Mol Pharm ; 19(5): 1586-1597, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35405077

RESUMO

Acetaminophen, nicotine, and lidocaine hydrochloride were investigated in their deeply supercooled liquid states using oscillatory shear rheology. The mechanical spectra of these drugs are presented in modulus, compliance, as well as fluidity formats. Their frequency profiles can be described via models adapted from the field of charge transport. Inspired by the success of this approach, the Barton-Nakajima-Namikawa relation, best known from the same field, was also tested. When adapted to rheology, this approach interrelates static and dynamic characteristics of viscous flow and was found to work excellently. The temperature dependence of the characteristic shear frequencies was checked against the shoving model, which relates them to the temperature-dependent instantaneous shear modulus and acceptable agreement was found. Combined with shear mechanical literature data on ibuprofen and indomethacin, a modified version of the phenomenological model by Gemant, DiMarzio, and Bishop (GDB) was employed to successfully predict the shape and amplitude of the dielectric spectra for all studied liquids, except for lidocaine hydrochloride. For the latter, the modified GDB model is suggested to aid in mapping out the reorientational part of the dielectric response, while the experimental results are strongly superimposed by ionic conduction phenomena. The reverse transformation, the calculation of rheological spectra based on dielectric ones, is also successfully demonstrated. For the example of acetyl salicylic acid, it is shown how dielectric spectra can be used to even predict rheological ones. The limits of the central parameter governing these mutual transformations, the electroviscoelastic material constant, and indications for its correlation with the dielectric relaxation strength are discussed. For pharmaceuticals characterized by a strong dynamical decoupling of the electrical from the mechanical degrees of freedom, the modified GDB model is not expected to be applicable.


Assuntos
Vidro , Lidocaína , Preparações Farmacêuticas , Reologia , Temperatura
14.
J Chem Phys ; 156(8): 084503, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35232193

RESUMO

Using oxygen-17 as a nuclear probe, spin relaxometry was applied to study the high-density and low-density states of amorphous ice, covering temperatures below and somewhat above their glass transitions. These findings are put in perspective with results from deuteron nuclear magnetic resonance and with calculations based on dielectrically detected correlation times. This comparison reveals the presence of a wide distribution of correlation times. Furthermore, oxygen-17 central-transition echo spectra were recorded for wide ranges of temperature and pulse spacing. The spectra cannot be described by a single set of quadrupolar parameters, suggesting a distribution of H-O-H opening angles that is broader for high-density than for low-density amorphous ice. Simulations of the pulse separation dependent spin-echo spectra for various scenarios demonstrate that a small-step frequency diffusion process, assigned to the presence of homonuclear oxygen-oxygen interactions, determines the shape evolution of the pulse-separation-dependent spectra.

15.
Eur Phys J E Soft Matter ; 44(11): 143, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34825973

RESUMO

In this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence. We then review the most recent structural indicators, the two-state model picture of water, and the importance of cooperative effects related to the fact that water is a hydrogen-bonded network liquid. We show throughout the review that water's peculiar properties come into play also when water is in solution, confined, and close to biological molecules. Concerning dynamics, upon mild supercooling water behaves as a fragile glass former following the mode coupling theory, and it turns into a strong glass former upon further cooling. Connections between the slow dynamics and the thermodynamics are discussed. The translational relaxation times of density fluctuations show in fact the fragile-to-strong crossover connected to the thermodynamics arising from the existence of two liquids. When considering also rotations, additional crossovers come to play. Mobility-viscosity decoupling is also discussed in supercooled water and aqueous solutions. Finally, the polyamorphism of glassy water is considered through experimental and simulation results both in bulk and in salty aqueous solutions. Grains and grain boundaries are also discussed.

16.
Phys Chem Chem Phys ; 23(42): 24211-24221, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34693949

RESUMO

The understanding of the microstructure of associated liquids promoted by hydrogen-bonding and constrained by steric hindrance is highly relevant in chemistry, physics, biology and for many aspects of daily life. In this study we use a combination of X-ray diffraction, dielectric spectroscopy and molecular dynamics simulations to reveal temperature induced changes in the microstructure of different octanol isomers, i.e., linear 1-octanol and branched 2-, 3- and 4-octanol. In all octanols, the hydroxyl groups form the basis of chain-, cyclic- or loop-like bonded structures that are separated by outwardly directed alkyl chains. This clustering is analyzed through the scattering pre-peaks observed from X-ray scattering and simulations. The charge ordering which pilots OH aggregation can be linked to the strength of the Debye process observed in dielectric spectroscopy. Interestingly, all methods used here converge to the same interpretation: as one moves from 1-octanol to the branched octanols, the cluster structure evolves from loose large aggregates to a larger number of smaller, tighter aggregates. All alcohols exhibit a peculiar temperature dependence of both the pre-peak and Debye process, which can be understood as a change in microstructure promoted by chain association with increased chain length possibly assisted by ring-opening effects. All these results tend to support the intuitive picture of the entropic constraint provided by branching through the alkyl tails and highlight its capital entropic role in supramolecular assembly.

17.
J Chem Phys ; 155(13): 134901, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624979

RESUMO

Nonlinear rheological properties of viscous indomethacin are studied in the frequency range of its structural relaxation, that is, in a range so far inaccessible to standard techniques involving medium-amplitude oscillatory shear amplitudes. The first- and third-order nonlinearity parameters thus recorded using a sequence of small and large shear excitations in a time efficient manner are compared with predictions from rheological models. By properly phase cycling the shear amplitudes, build-up and decay transients are recorded. Analogous to electrical-field experiments, these transients yield direct access to the structural relaxation times under linear and nonlinear shearing conditions. To demonstrate the broader applicability of the present approach, transient analyses are also carried out for the glass formers glycerol, ortho-terphenyl, and acetaminophen.


Assuntos
Temperatura Baixa , Indometacina , Reologia , Acetaminofen , Glicerol , Indometacina/química , Compostos de Terfenil , Viscosidade
18.
J Chem Phys ; 153(12): 124510, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33003722

RESUMO

Relaxation spectra of molecular glass formers devoid of secondary relaxation maxima, as measured by dielectric spectroscopy (DS), nuclear magnetic resonance (NMR) relaxometry, photon correlation spectroscopy (PCS), and Fabry-Perot interferometry, are quantitatively compared in terms of the Kohlrausch stretching parameter ßK. For a reliable estimate of ßK, the excess wing contribution has to be included in the spectral analysis. The relaxation stretching probed by PCS and NMR varies only weakly among the liquids (ßK = 0.58 ± 0.06). It is similar to that found in DS, provided that the liquid is sufficiently nonpolar (relaxation strength Δε≲6). For larger strengths, larger ßK DS (narrowed relaxation spectra) are found when compared to those reported from NMR and PCS. Frequency-temperature superposition (FTS) holds for PCS and NMR. This is demonstrated by data scaling and, for the few glass formers for which results are available, by the equivalence of the susceptibilities χPCS ″ωτ∝χNMR ″τ∝χNMR ″ω, i.e., measuring at a constant frequency is equivalent to measuring at a constant temperature or constant correlation time. In this context, a plot of the spin-lattice relaxation rate R1(T) as a function of the spin-spin relaxation rate R2(T) is suggested to reveal the stretching parameter without the need to perform frequency-dependent investigations. Dielectrically, we identify a trend of increasing deviations from FTS with increasing Δε. Depending on the technique and glass former, the relative relaxation strength of the excess wing varies, whereas its exponent appears to be method independent for a given substance. For polar liquids, we discuss possible reasons for the discrepancy between the results from PCS and NMR as compared to those from DS.

19.
Phys Rev Lett ; 125(6): 065503, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32845696

RESUMO

Glycerol pressurized to 2 kbar and hyperquenched from the bulk liquid at rates of about -10 000 K/s, has been frozen to an extreme out-of-equilibrium state. As compared to conventionally cooled melts, the resulting material exhibits lower orientational correlations, enabling the observation of a secondary relaxation peak in the ambient-pressure dielectric response. The hyperquenching rather than the pressurizing part of the preparation protocol induces the observed structural changes. These vanish entirely only well above the glass transition temperature of the equilibrium liquid and are evidence for strong similarities between hyperquenched and vapor-deposited glass formers.

20.
J Chem Phys ; 152(3): 034503, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968976

RESUMO

In this work, trimethoxyboroxine (TMB) is identified as a small-molecule glass former. In its viscous liquid as well as glassy states, static and dynamic properties of TMB are explored using various techniques. It is found that, on average, the structure of the condensed TMB molecules deviates from threefold symmetry so that TMB's electric dipole moment is nonzero, thus rendering broadband dielectric spectroscopy applicable. This method reveals the super-Arrhenius dynamics that characterizes TMB above its glass transition, which occurs at about 204 K. To extend the temperature range in which the molecular dynamics can be studied, 11B nuclear magnetic resonance experiments are additionally carried out on rotating and stationary samples: Exploiting dynamic second-order shifts, spin-relaxation times, line shape effects, as well as stimulated-echo and two-dimensional exchange spectroscopy, a coherent picture regarding the dynamics of this glass former is gained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...