Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072389

RESUMO

Influenza virus (IV) infections are considered to cause severe diseases of the respiratory tract. Beyond mild symptoms, the infection can lead to respiratory distress syndrome and multiple organ failure. Occurrence of resistant seasonal and pandemic strains against the currently licensed antiviral medications points to the urgent need for new and amply available anti-influenza drugs. Interestingly, the virus-supportive function of the cellular phosphatidylinositol 3-kinase (PI3K) suggests that this signaling module may be a potential target for antiviral intervention. In the sense of repurposing existing drugs for new indications, we used Pictilisib, a known PI3K inhibitor to investigate its effect on IV infection, in mono-cell-culture studies as well as in a human chip model. Our results indicate that Pictilisib is a potent inhibitor of IV propagation already at early stages of infection. In a murine model of IV pneumonia, the in vitro key findings were verified, showing reduced viral titers as well as inflammatory response in the lung after delivery of Pictilisib. Our data identified Pictilisib as a promising drug candidate for anti-IV therapies that warrant further studying. These results further led to the conclusion that the repurposing of previously approved substances represents a cost-effective and efficient way for development of novel antiviral strategies.


Assuntos
Indazóis/farmacologia , Vírus da Influenza A/metabolismo , Pulmão , Infecções por Orthomyxoviridae , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Pneumonia Viral , Sulfonamidas/farmacologia , Células A549 , Animais , Cães , Humanos , Pulmão/enzimologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/enzimologia , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/enzimologia , Pneumonia Viral/virologia
2.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637603

RESUMO

Infections with SARS-CoV-2 can be asymptomatic, but they can also be accompanied by a variety of symptoms that result in mild to severe coronavirus disease-19 (COVID-19) and are sometimes associated with systemic symptoms. Although the viral infection originates in the respiratory system, it is unclear how the virus can overcome the alveolar barrier, which is observed in severe COVID-19 disease courses. To elucidate the viral effects on the barrier integrity and immune reactions, we used mono-cell culture systems and a complex human chip model composed of epithelial, endothelial, and mononuclear cells. Our data show that SARS-CoV-2 efficiently infected epithelial cells with high viral loads and inflammatory response, including interferon expression. By contrast, the adjacent endothelial layer was neither infected nor did it show productive virus replication or interferon release. With prolonged infection, both cell types were damaged, and the barrier function was deteriorated, allowing the viral particles to overbear. In our study, we demonstrate that although SARS-CoV-2 is dependent on the epithelium for efficient replication, the neighboring endothelial cells are affected, e.g., by the epithelial cytokines or components induced during infection, which further results in the damage of the epithelial/endothelial barrier function and viral dissemination.IMPORTANCESARS-CoV-2 challenges healthcare systems and societies worldwide in unprecedented ways. Although numerous new studies have been conducted, research to better understand the molecular pathogen-host interactions are urgently needed. For this, experimental models have to be developed and adapted. In the present study we used mono cell-culture systems and we established a complex chip model, where epithelial and endothelial cells are cultured in close proximity. We demonstrate that epithelial cells can be infected with SARS-CoV-2, while the endothelium did not show any infection signs. Since SARS-CoV-2 is able to establish viremia, the link to thromboembolic events in severe COVID-19 courses is evident. However, whether the endothelial layer is damaged by the viral pathogens or whether other endothelial-independent homeostatic factors are induced by the virus is essential for understanding the disease development. Therefore, our study is important as it demonstrates that the endothelial layer could not be infected by SARS-CoV-2 in our in vitro experiments, but we were able to show the destruction of the epithelial-endothelial barrier in our chip model. From our experiments we can assume that virus-induced host factors disturbed the epithelial-endothelial barrier function and thereby promote viral spread.

3.
Med Mycol ; 59(5): 505-509, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33336238

RESUMO

Activation of mucosal-associated invariant T cells (MAIT cells) by certain bacteria, viruses, and yeast is well studied, but the activation potential of filamentous moulds from the order Mucorales is not known. Here, we show a rapid response of human MAIT cells against the Mucorales species Mucor circinelloides, Rhizopus arrhizus, and Rhizopus microsporus. This activation included upregulation of CD69 and degranulation marked by increased CD107a expression, while intracellular perforin and granzyme A expression were reduced. Furthermore, blocking of the antigen-presenting molecule major histocompatibility complex class I-related abrogated MAIT cell activation demonstrating a T cell receptor-dependent stimulation by Mucorales.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Mucorales/imunologia , Mucormicose/imunologia , Mucormicose/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Riboflavina/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Granzimas/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Mucor/imunologia , Mucormicose/microbiologia , Perforina/metabolismo , Rhizopus/imunologia , Rhizopus oryzae/imunologia , Regulação para Cima
4.
J Infect Dis ; 221(12): 2060-2071, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31993642

RESUMO

BACKGROUND: Candida albicans and Candida glabrata are the 2 most prevalent Candida species causing bloodstream infections. Patterns of innate immune activation triggered by the 2 fungi differ considerably. METHODS: To analyze human natural killer (NK) cell activation by both species, we performed ex vivo whole-blood infection assays and confrontation assays with primary human NK cells. RESULTS: C. albicans was a stronger activator for isolated human NK cells than C. glabrata. In contrast, activation of blood NK cells, characterized by an upregulated surface exposure of early activation antigen CD69 and death receptor ligand TRAIL, as well as interferon-γ (IFN-γ) secretion, was more pronounced during C. glabrata infection. NK cell activation in blood is mediated by humoral mediators released by other immune cells and does not depend on direct activation by fungal cells. Cross-talk between Candida-confronted monocyte-derived dendritic cells (moDC) and NK cells resulted in the same NK activation phenotype as NK cells in human blood. Blocking experiments and cytokine substitution identified interleukin-12 as a critical mediator in regulation of primary NK cells by moDC. CONCLUSIONS: Activation of human NK cells in response to Candida in human blood mainly occurs indirectly by mediators released from monocytic cells.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Células Matadoras Naturais/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Buffy Coat , Candida glabrata/imunologia , Candidíase/sangue , Candidíase/microbiologia , Comunicação Celular/imunologia , Células Cultivadas , Voluntários Saudáveis , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Células Matadoras Naturais/metabolismo , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Cultura Primária de Células , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Regulação para Cima/imunologia
5.
J Vis Exp ; (154)2019 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-31868176

RESUMO

Invasive pulmonary infection by the mold Aspergillus fumigatus poses a great threat to immunocompromised patients. Inhaled fungal conidia (spores) are cleared from the human lung alveoli by being phagocytosed by innate monocytes and/or neutrophils. This protocol offers a fast and reliable measurement of phagocytosis by flow cytometry using fluorescein isothiocyanate (FITC)-labeled conidia for co-incubation with human leukocytes and subsequent counterstaining with an anti-FITC antibody to allow discrimination of internalized and cell-adherent conidia. Major advantages of this protocol are its rapidness, the possibility to combine the assay with cytometric analysis of other cell markers of interest, the simultaneous analysis of monocytes and neutrophils from a single sample and its applicability to other cell wall-bearing fungi or bacteria. Determination of percentages of phagocytosing leukocytes provides a means to microbiologists for evaluating virulence of a pathogen or for comparing pathogen wildtypes and mutants as well as to immunologists for investigating human leukocyte capabilities to combat pathogens.


Assuntos
Aspergillus fumigatus/fisiologia , Citometria de Fluxo , Leucócitos/imunologia , Leucócitos/microbiologia , Fagocitose , Esporos Fúngicos/fisiologia , Humanos , Leucócitos/citologia
6.
Eur J Immunol ; 48(10): 1698-1706, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30059139

RESUMO

Mucosal associated invariant T cells (MAIT cells) are innate-like T cells (TC) which are known to be activated by several bacteria and viruses. However, activation of MAIT cells by moulds, such as the opportunistic human pathogen Aspergillus, is not well described. Stimulation of human PBMC with A. fumigatus, A. flavus, or A. terreus conidia revealed that in contrast to conventional CD4+ and CD8+ TC, MAIT cells responded already after 4 h of coincubation with upregulation of CD69. Furthermore, concurrent increase of CD107a expression and reduced intracellular expression of cytolytic proteins like perforin and granzyme indicated degranulation of intracellular vesicles. MAIT cell activation only occurred in the presence of APC and was dependent on cell-cell contact as separation of TC and APC abrogated MAIT cell activation. Furthermore, we observed that MAIT cell activation by moulds requires presentation of riboflavin metabolites and depends on TCR engagement as antibody blocking of MR1, the antigen presenting molecule for MAIT cells, prevented upregulation of CD69 and CD107a. In summary, we could demonstrate that MAIT cells are activated by Aspergillus conidia in a TCR-dependent manner by APC. These findings reveal MAIT cells as an interesting new target in antifungal defense.


Assuntos
Apresentação de Antígeno , Aspergillus/imunologia , Ativação Linfocitária , Células T Invariantes Associadas à Mucosa/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Células Cultivadas , Granzimas/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Lectinas Tipo C/genética , Proteína 1 de Membrana Associada ao Lisossomo/genética , Perforina/genética , Esporos Fúngicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...