Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(1): 241-247, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38164541

RESUMO

Photosolvation is a type of ligand substitution reaction started by irradiation of a solution with light, triggering the replacement of a ligand with a molecule from the solvent. The excited state is created through many possible pathways. For the class of hexacyanides of groups 8 and 9 of the periodic table, irradiation in the ligand field band is followed by intersystem crossing to the lowest excited triplet state, which we propose to mediate the photoaquation reaction in this class of complexes. In this study, we present time-resolved X-ray absorption data showing indications of the triplet intermediate state in the cobalt(III) hexacyanide complex and we discuss general aspects of the photoaquation reaction in comparison with reported data on the isoelectronic iron(II) hexacyanide. Quantum chemical calculations are analyzed and suggest that the nature of the lowest excited triplet state in each complex can explain the drastically different rate of reactions observed.

2.
Phys Chem Chem Phys ; 24(45): 27819-27826, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350272

RESUMO

In this work, we investigate the photo-aquation reaction of the ferrocyanide anion with multi-edge picosecond soft X-ray spectroscopy. Combining the information of the iron L-edge with nitrogen and oxygen K-edges, we carry out a complete characterization of the bonding channels in the [Fe(CN)5(H2O)]3- photo-product. We observe clear spectral signatures of covalent bonding between water and the metal, reflecting the mixing of the Fe dz2 orbital with the 3a1 and 4a1 orbitals of H2O. Additional fingerprints related to the symmetry reduction and the resulting loss in orbital degeneracy are also reported. The implications of the elucidated fingerprints in the context of future ultra-fast experiments are also discussed.

3.
Proc Natl Acad Sci U S A ; 119(28): e2118101119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787045

RESUMO

The fluctuating hydrogen bridge bonded network of liquid water at ambient conditions entails a varied ensemble of the underlying constituting H2O molecular moieties. This is mirrored in a manifold of the H2O molecular potentials. Subnatural line width resonant inelastic X-ray scattering allowed us to quantify the manifold of molecular potential energy surfaces along the H2O symmetric normal mode and the local asymmetric O-H bond coordinate up to 1 and 1.5 Å, respectively. The comparison of the single H2O molecular potentials and spectroscopic signatures with the ambient conditions liquid phase H2O molecular potentials is done on various levels. In the gas phase, first principles, Morse potentials, and stepwise harmonic potential reconstruction have been employed and benchmarked. In the liquid phase the determination of the potential energy manifold along the local asymmetric O-H bond coordinate from resonant inelastic X-ray scattering via the bound state oxygen 1s to [Formula: see text] resonance is treated within these frameworks. The potential energy surface manifold along the symmetric stretch from resonant inelastic X-ray scattering via the oxygen 1s to [Formula: see text] resonance is based on stepwise harmonic reconstruction. We find in liquid water at ambient conditions H2O molecular potentials ranging from the weak interaction limit to strongly distorted potentials which are put into perspective to established parameters, i.e., intermolecular O-H, H-H, and O-O correlation lengths from neutron scattering.


Assuntos
Hidrogênio , Água , Técnicas de Química Analítica , Oxigênio/química , Água/química , Raios X
4.
Phys Chem Chem Phys ; 24(30): 17979-17985, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35737440

RESUMO

Cr(CO)6 was investigated by X-ray absorption spectroscopy. The spectral signature at the metal edge provides information about the back-bonding of the metal in this class of complexes. Among the processes it participates in is ligand substitution in which a carbonyl ligand is ejected through excitation to a metal to ligand charge transfer (MLCT) band. The unsaturated carbonyl Cr(CO)5 is stabilized by solution media in square pyramidal geometry and further reacts with the solvent. Multi-site-specific probing after photoexcitation was used to investigate the ligand substitution photoreaction process which is a common first step in catalytic processes involving metal carbonyls. The data were analysed with the aid of TD-DFT computations for different models of photoproducts and signatures for ligand rearrangement after substitution were found. The rearrangement was found to occur in about 790 ps in agreement with former studies of the photoreaction.

5.
J Phys Chem Lett ; 13(10): 2459-2466, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35266716

RESUMO

Tautomerism is one of the most important forms of isomerism, owing to the facile interconversion between species and the large differences in chemical properties introduced by the proton transfer connecting the tautomers. Spectroscopic techniques are often used for the characterization of tautomers. In this context, separating the overlapping spectral response of coexisting tautomers is a long-standing challenge in chemistry. Here, we demonstrate that by using resonant inelastic X-ray scattering tuned to the core excited states at the site of proton exchange between tautomers one is able to experimentally disentangle the manifold of valence excited states of each tautomer in a mixture. The technique is applied to the prototypical keto-enol equilibrium of 3-hydroxypyridine in aqueous solution. We detect transitions from the occupied orbitals into the LUMO for each tautomer in solution, which report on intrinsic and hydrogen-bond-induced orbital polarization within the π and σ manifolds at the proton-transfer site.


Assuntos
Prótons , Ligação de Hidrogênio , Isomerismo , Análise Espectral , Raios X
6.
Phys Chem Chem Phys ; 24(12): 7505-7511, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35288726

RESUMO

Free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin stands for the class of powerful porphyrin photosensitizers for singlet oxygen generation and light-harvesting. The atomic level selectivity of dynamic UV pump - N K-edge probe X-ray absorption spectroscopy in combination with time-dependent density functional theory (TD-DFT) gives direct access to the crucial excited molecular states within the unusual relaxation pathway. The efficient intersystem crossing, that is El-Sayed forbidden and not facilitated by a heavy atom is confirmed to be the result of the long singlet excited state lifetime (Qx 4.9 ns) and thermal effects. Overall, the interplay of stabilization by conservation of angular momenta and vibronic relaxation drive the de-excitation in these chromophores.

7.
Phys Chem Chem Phys ; 23(43): 24765-24772, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714305

RESUMO

The central moiety of porphyrins is shown to control the charge state of the inner complex and links it by covalent interaction to the peripheral substituents. This link, which enables the versatile functions of porphyrins, is not picked up in the established, reduced four orbital picture [Gouterman, J. Mol. Spectrosc., 1961, 6, 138]. X-ray absorption spectroscopy at the N K-edge with density functional theory approaches gives access to the full electronic structure, in particular the π* manifold beyond the Gouterman orbitals. Systematic variation of the central moiety highlights two linked, governing trends: The ionicity of the porphyrin center increases from the aminic N-H to N-Cu to N-Zn to N-Mg to the iminic N:. At the same time covalency with peripheral substituents increases and compensates the buildup of high charge density at the coordinated nitrogen sites.

8.
J Phys Chem B ; 125(9): 2372-2379, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33562959

RESUMO

Steric hindrance of hydration and hydrogen bond enhancement by localized charges have been identified as key factors for the massive chemical differences between the hydroxypyridine/pyridone isomers in aqueous solution. While all isomers occur mainly in the hydroxypyridine form in the gas phase, they differ by more than 3 orders of magnitude both in their acidity and tautomeric equilibrium constants upon hydration. By monitoring the electronic and solvation structures as a function of the protonation state and the O- substitution position on the pyridine ring, the amplification of the isomeric differences in aqueous solution has been investigated. Near-edge X-ray absorption fine structure (NEXAFS) measurements at the N K-edge served as the probe of the chemical state. The combination of molecular dynamics simulations, complete active space self-consistent field (CASSCF), and time-dependent density functional theory (TD-DFT) spectral calculations contributes to unraveling the principles of tautomerism and acidity in multiple biochemical systems based on tautomerism.

9.
Sci Rep ; 11(1): 1883, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479313

RESUMO

How different microscopic mechanisms of ultrafast spin dynamics coexist and interplay is not only relevant for the development of spintronics but also for the thorough description of physical systems out-of-equilibrium. In pure crystalline ferromagnets, one of the main microscopic mechanism of spin relaxation is the electron-phonon (el-ph) driven spin-flip, or Elliott-Yafet, scattering. Unexpectedly, recent experiments with ferro- and ferrimagnetic alloys have shown different dynamics for the different sublattices. These distinct sublattice dynamics are contradictory to the Elliott-Yafet scenario. In order to rationalize this discrepancy, it has been proposed that the intra- and intersublattice exchange interaction energies must be considered in the microscopic demagnetization mechanism, too. Here, using a temperature-dependent x-ray emission spectroscopy (XES) method, we address experimentally the element specific el-ph angular momentum transfer rates, responsible for the spin-flips in the respective (sub)lattices of Fe[Formula: see text]Ni[Formula: see text], Fe[Formula: see text]Ni[Formula: see text] and pure nickel single crystals. We establish how the deduced rate evolution with the temperature is linked to the exchange coupling constants reported for different alloy stoichiometries and how sublattice exchange energies threshold the related el-ph spin-flip channels. Thus, these results evidence that the Elliott-Yafet spin-flip scattering, thresholded by sublattice exchange energies, is the relevant microscopic process to describe sublattice dynamics in alloys and elemental magnetic systems.

10.
Sci Rep ; 9(1): 8977, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222052

RESUMO

While extensive work has been dedicated to the measurement of the demagnetization time following an ultra-short laser pulse, experimental studies of its underlying microscopic mechanisms are still scarce. In transition metal ferromagnets, one of the main mechanism is the spin-flip of conduction electrons driven by electron-phonon scattering. Here, we present an original experimental method to monitor the electron-phonon mediated spin-flip scattering rate in nickel through the stringent atomic symmetry selection rules of x-ray emission spectroscopy. Increasing the phonon population leads to a waning of the 3d → 2p3/2 decay peak intensity, which reflects an increase of the angular momentum transfer scattering rate attributed to spin-flip. We find a spin relaxation time scale in the order of 50 fs in the 3d-band of nickel at room temperature, while consistantly, no such peak evolution is observed for the diamagnetic counterexample copper, using the same method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...