Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454906

RESUMO

The hostile tumor microenvironment (TME) is a major challenge for the treatment of solid tumors with T-cell receptor (TCR)-modified T-cells (TCR-Ts), as it negatively influences T-cell efficacy, fitness, and persistence. These negative influences are caused, among others, by the inhibitory checkpoint PD-1/PD-L1 axis. The Preferentially Expressed Antigen in Melanoma (PRAME) is a highly relevant cancer/testis antigen for TCR-T immunotherapy due to broad expression in multiple solid cancer indications. A TCR with high specificity and sensitivity for PRAME was isolated from non-tolerized T-cell repertoires and introduced into T-cells alongside a chimeric PD1-41BB receptor, consisting of the natural extracellular domain of PD-1 and the intracellular signaling domain of 4-1BB, turning an inhibitory pathway into a T-cell co-stimulatory pathway. The addition of PD1-41BB to CD8+ T-cells expressing the transgenic PRAME-TCR enhanced IFN-γ secretion, improved cytotoxic capacity, and prevented exhaustion upon repetitive re-challenge with tumor cells in vitro without altering the in vitro safety profile. Furthermore, a single dose of TCR-Ts co-expressing PD1-41BB was sufficient to clear a hard-to-treat melanoma xenograft in a mouse model, whereas TCR-Ts without PD1-41BB could not eradicate the PD-L1-positive tumors. This cutting-edge strategy supports development efforts to provide more effective TCR-T immunotherapies for the treatment of solid tumors.

2.
Front Immunol ; 10: 1336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275310

RESUMO

Recognition of cancer antigens drives the clonal expansion of cancer-reactive T cells, which is thought to contribute to restricted T-cell receptor (TCR) repertoires in tumor-infiltrating lymphocytes (TILs). To understand how tumors escape anti-tumor immunity, we investigated tumor-associated T-cell repertoires of patients with advanced melanoma and after blockade of the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) or programmed cell death 1 (PD-1). TCR Vß-gene spectratyping allowed us to quantify restrictions of T-cell repertoires and, further, diversities of T-cell clones. In this study, we show that the blood TCR repertoires were variably restricted in CD4+ and extensively restricted in CD8+ T cells of patients with advanced melanoma, and contained clones in both T-cell fractions prior to the start of immunotherapy. A greater diversification especially of CD4+ blood T-cell clones before immunotherapy showed statistically significant correlations with long-term survival upon CTLA4 or PD-1 inhibition. Analysis of TILs and corresponding blood available in one patient indicated that blood clonality may at least partially be related to the clonal expansion in the tumor microenvironment. In patients who developed severe immune-related adverse events (IrAEs), CD4+ and CD8+ TCR spectratypes became more restricted during anti-CTLA4 treatment, suggesting that newly expanded oligoclonal T-cell responses may contribute to IrAEs. This study reveals diverse T-cell clones in the blood of melanoma patients prior to immunotherapy, which may reflect the extent to which T cells are able to react against melanoma and potentially control melanoma progression. Therefore, the T-cell clonality in the circulation may have predictive value for antitumor responses from checkpoint inhibition.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígeno CTLA-4/imunologia , Melanoma/imunologia , Receptor de Morte Celular Programada 1/imunologia , Adulto , Idoso , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , Microambiente Tumoral/imunologia
3.
Clin Cancer Res ; 22(14): 3499-512, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26944067

RESUMO

PURPOSE: Exosomes deliver signals to target cells and could thus be exploited as an innovative therapeutic tool. We investigated the ability of membrane TRAIL-armed exosomes to deliver proapoptotic signals to cancer cells and mediate growth inhibition in different tumor models. EXPERIMENTAL METHODS AND RESULTS: K562 cells, transduced with lentiviral human membrane TRAIL, were used for the production of TRAIL(+) exosomes, which were studied by nanoparticle tracking analysis, cytofluorimetry, immunoelectronmicroscopy, Western blot, and ELISA. In vitro, TRAIL(+) exosomes induced more pronounced apoptosis (detected by Annexin V/propidium iodide and activated caspase-3) in TRAIL-death receptor (DR)5(+) cells (SUDHL4 lymphoma and INT12 melanoma), with respect to the DR5(-)DR4(+)KMS11 multiple myeloma. Intratumor injection of TRAIL(+) exosomes, but not mock exosomes, induced growth inhibition of SUDHL4 (68%) and INT12 (51%), and necrosis in KMS11 tumors. After rapid blood clearance, systemically administered TRAIL(+) exosomes accumulated in the liver, lungs, and spleen and homed to the tumor site, leading to a significant reduction of tumor growth (58%) in SUDHL4-bearing mice. The treatment of INT12-bearing animals promoted tumor necrosis and a not statistically significant tumor volume reduction. In KMS11-bearing mice, despite massive perivascular necrosis, no significant tumor growth inhibition was detected. CONCLUSIONS: TRAIL-armed exosomes can induce apoptosis in cancer cells and control tumor progression in vivo Therapeutic efficacy was particularly evident in intratumor setting, while depended on tumor model upon systemic administration. Thanks to their ability to deliver multiple signals, exosomes thus represent a promising therapeutic tool in cancer. Clin Cancer Res; 22(14); 3499-512. ©2016 AACR.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Exossomos/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Caspase 3/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Células K562 , Melanoma/metabolismo , Camundongos , Camundongos SCID , Necrose/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Semin Cancer Biol ; 22(4): 342-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22369922

RESUMO

Exosomes are endosomal-derived nanovesicles released by most cells types, including tumor cells, and principally involved in intercellular communication in physiology and disease. Tumor exosomes are gaining increasing interest in medicine and oncology as efficient tools for the delivery of defined signals. Representing the acellular replicas of tumor cells, they contain a great variety of bioactive molecules, such as proteins, RNA, miRNA and DNA. Their great ability to recirculate in body fluids and their structure allow them to transport their cargo to distant targets. Major studies have shown that tumor exosomes convey information not only between tumor cells but also to other cell types, including different immune cell components. There is increasing evidence that these nanovesicles may contribute to cancer progression by influencing different immune cell types, likely blunting specific T cell immunity and skewing innate immune cells toward a pro-tumorigenic phenotype. Because of this function and the additional property to deliver molecular signals modulating neoangiogenesis and stroma remodeling, tumor exosomes are believed to play a role in tumor progression by favoring metastatic niche onset. This review outlines the recent knowledge on immune suppressive mechanisms mediated by tumor exosomes. We will discuss our view on the role of these nanovesicular structures in cancer progression and how their presence could interfere with cancer therapy.


Assuntos
Exossomos/metabolismo , Tolerância Imunológica , Neoplasias/imunologia , Animais , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral
5.
J Transl Med ; 8: 90, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20920165

RESUMO

BACKGROUND: Antigen-loaded dendritic cells (DC) are capable of priming naïve T cells and therefore represent an attractive adjuvant for vaccine development in anti-tumor immunotherapy. Numerous protocols have been described to date using different maturation cocktails and time periods for the induction of mature DC (mDC) in vitro. For clinical application, the use of mDC that can be generated in only three days saves on the costs of cytokines needed for large scale vaccine cell production and provides a method to produce cells within a standard work-week schedule in a GMP facility. METHODS: In this study, we addressed the properties of antigen uptake, processing and presentation by monocyte-derived DC prepared in three days (3d mDC) compared with conventional DC prepared in seven days (7d mDC), which represent the most common form of DC used for vaccines to date. RESULTS: Although they showed a reduced capacity for spontaneous antigen uptake, 3d mDC displayed higher capacity for stimulation of T cells after loading with an extended synthetic peptide that requires processing for MHC binding, indicating they were more efficient at antigen processing than 7d DC. We found, however, that 3d DC were less efficient at expressing protein after introduction of in vitro transcribed (ivt)RNA by electroporation, based on published procedures. This deficit was overcome by altering electroporation parameters, which led to improved protein expression and capacity for T cell stimulation using low amounts of ivtRNA. CONCLUSIONS: This new procedure allows 3d mDC to replace 7d mDC for use in DC-based vaccines that utilize long peptides, proteins or ivtRNA as sources of specific antigen.


Assuntos
Antígenos/imunologia , Células Dendríticas/imunologia , Vacinas/biossíntese , Linhagem Celular Tumoral , Humanos , Vacinas/imunologia
6.
J Immunol ; 185(1): 738-47, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20511554

RESUMO

In this paper, we describe a new method for preparation of human dendritic cells (DCs) that secrete bioactive IL-12(p70) using synthetic immunostimulatory compounds as TLR7/8 agonists. Monocyte-derived DCs were generated using a procedure that provided mature cells within 3 d. Several maturation mixtures that contained various cytokines, IFN-gamma, different TLR agonists, and PGE(2) were compared for impact on cell recovery, phenotype, cytokine secretion, migration, and lymphocyte activation. Mixtures that included the TLR7/8 agonists R848 or CL075, combined with the TLR3 agonist polyinosinic:polycytidylic acid, yielded 3-d mature DCs that secreted high levels of IL-12(p70), showed strong chemotaxis to CCR7 ligands, and had a positive costimulatory potential. They also had excellent capacity to activate NK cells, effectively polarized CD4(+) and CD8(+) T cells to secrete IFN-gamma and to induce T cell-mediated cytotoxic function. Thereby, mature DCs prepared within 3 d using such maturation mixtures displayed optimal functions required for vaccine development.


Assuntos
Diferenciação Celular/imunologia , Polaridade Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/transplante , Quinolinas/farmacologia , Células Th1/imunologia , Tiazóis/farmacologia , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Adjuvantes Imunológicos/farmacologia , Vacinas Anticâncer/síntese química , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/citologia , Humanos , Imidazóis/agonistas , Imidazóis/farmacologia , Imunoterapia Adotiva/métodos , Interferon gama/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ligantes , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Poli I-C/metabolismo , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Células Th1/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/fisiologia , Receptor 8 Toll-Like/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...