Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756681

RESUMO

Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite-based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat-moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.

4.
Trends Plant Sci ; 28(7): 808-824, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37055243

RESUMO

Temperature influences the seasonal growth and geographical distribution of plants. Heat or cold stress occur when temperatures exceed or fall below the physiological optimum ranges, resulting in detrimental and irreversible damage to plant growth, development, and yield. Ethylene is a gaseous phytohormone with an important role in plant development and multiple stress responses. Recent studies have shown that, in many plant species, both heat and cold stress affect ethylene biosynthesis and signaling pathways. In this review, we summarize recent advances in understanding the role of ethylene in plant temperature stress responses and its crosstalk with other phytohormones. We also discuss potential strategies and knowledge gaps that need to be adopted and filled to develop temperature stress-tolerant crops by optimizing ethylene response.


Assuntos
Etilenos , Reguladores de Crescimento de Plantas , Temperatura , Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Desenvolvimento Vegetal , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico
5.
Plant Cell Physiol ; 64(9): 996-1007, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061839

RESUMO

Strigolactones (SLs) were initially discovered as germination inducers for root parasitic plants. In 2015, three groups independently reported the characterization of the SL receptor in the root parasitic plant Striga hermonthica, which causes significant damage to crop production, particularly in sub-Saharan Africa. The characterized receptors belong to HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE2 (HTL/KAI2), which is a member of the α/ß-hydrolase protein superfamily. In non-parasitic plants, HTL/KAI2 perceives the smoke-derived germination inducer karrikin and a yet-unidentified endogenous ligand. However, root parasitic plants evolved a specific clade of HTL/KAI2 that has diverged from the KAI2 clade of non-parasitic plants. The S. hermonthica SL receptors are included in this specific clade, which is called KAI2 divergent (KAI2d). Orobanche minor is an obligate root holoparasitic plant that grows completely dependent on the host for water and nutrients because of a lack of photosynthetic ability. Previous phylogenetic analysis of KAI2 proteins in O. minor has demonstrated the presence of at least five KAI2d clade genes. Here, we report that KAI2d3 and KAI2d4 in O. minor have the ability to act as the SL receptors. They directly interact with SLs in vitro, and when expressed in Arabidopsis, they rescue thermo-inhibited germination in response to the synthetic SL analog GR24. In particular, KAI2d3 showed high sensitivity to GR24 when expressed in Arabidopsis, suggesting that this receptor enables highly sensitive SL recognition in O. minor. Furthermore, we provide evidence that these KAI2d receptors are involved in the perception of sesquiterpene lactones, non-strigolactone-type germination inducers.


Assuntos
Orobanche , Sesquiterpenos , Arabidopsis/genética , Arabidopsis/metabolismo , Germinação , Lactonas/farmacologia , Lactonas/metabolismo , Orobanche/metabolismo , Percepção , Filogenia , Sesquiterpenos/metabolismo
7.
Plant Cell ; 35(3): 960-962, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638057
8.
Plant Direct ; 6(9): e446, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36172078

RESUMO

In Arabidopsis thaliana, the Sigma factor B regulator RsbQ-like family of α/ß hydrolases contains the strigolactone (SL) receptor DWARF14 (AtD14), the karrikin receptor KARRIKIN INSENSITIVE2 (AtKAI2), and DWARF14-LIKE2 (AtDLK2), a protein of unknown function. Despite very similar protein folds, AtD14 and AtKAI2 differ in size and architecture of their ligand binding pockets, influencing their substrate specificity. We present the 1.5 Å crystal structure of AtDLK2, revealing the smallest ligand binding pocket in the protein family, bordered by two unique glycine residues. We identified a gatekeeper residue in the protein's lid domain and present a pyrrolo-quinoline-dione compound that inhibits AtDLK2's enzymatic activity.

10.
14.
Acta Crystallogr D Struct Biol ; 77(Pt 5): 674-689, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950022

RESUMO

Vibrio species play a crucial role in maintaining the carbon and nitrogen balance between the oceans and the land through their ability to employ chitin as a sole source of energy. This study describes the structural basis for the action of the GH20 ß-N-acetylglucosaminidase (VhGlcNAcase) in chitin metabolism by Vibrio campbellii (formerly V. harveyi) strain ATCC BAA-1116. Crystal structures of wild-type VhGlcNAcase in the absence and presence of the sugar ligand, and of the unliganded D437A mutant, were determined. VhGlcNAcase contains three distinct domains: an N-terminal carbohydrate-binding domain linked to a small α+ß domain and a C-terminal (ß/α)8 catalytic domain. The active site of VhGlcNAcase has a narrow, shallow pocket that is suitable for accommodating a small chitooligosaccharide. VhGlcNAcase is a monomeric enzyme of 74 kDa, but its crystal structures show two molecules of enzyme per asymmetric unit, in which Gln16 at the dimeric interface of the first molecule partially blocks the entrance to the active site of the neighboring molecule. The GlcNAc unit observed in subsite -1 makes exclusive hydrogen bonds to the conserved residues Arg274, Tyr530, Asp532 and Glu584, while Trp487, Trp546, Trp582 and Trp505 form a hydrophobic wall around the -1 GlcNAc. The catalytic mutants D437A/N and E438A/Q exhibited a drastic loss of GlcNAcase activity, confirming the catalytic role of the acidic pair (Asp437-Glu438).


Assuntos
Acetilglucosaminidase/química , Quitina/metabolismo , Vibrio/enzimologia , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
15.
Plant Cell ; 33(2): 338-357, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33793870

RESUMO

The ethylene response factor (ERF) transcription factors are integral components of environmental stress signaling cascades, regulating a wide variety of downstream genes related to stress responses and plant development. However, the mechanisms by which ERF genes regulate the heat stress response are not well understood. Here, we uncover the positive role of ethylene signaling, ERF95 and ERF97 in basal thermotolerance of Arabidopsis thaliana. We demonstrate that ethylene signaling-defective mutants exhibit compromised basal thermotolerance, whereas plants with constitutively activated ethylene response show enhanced basal thermotolerance. EIN3 physically binds to the promoters of ERF95 and ERF97. Ectopic constitutive expression of ERF95 or ERF97 increases the basal thermotolerance of plants. In contrast, erf95 erf96 erf97 erf98 quadruple mutants exhibit decreased basal thermotolerance. ERF95 and ERF97 genetically function downstream of EIN3. ERF95 can physically interact with ERF97, and this interaction is heat inducible. ERF95 and ERF97 regulate a common set of target genes, including known heat-responsive genes and directly bind to the promoter of HSFA2. Thus, our study reveals that the EIN3-ERF95/ERF97-HSFA2 transcriptional cascade may play an important role in the heat stress response, thereby establishing a connection between ethylene and its downstream regulation in basal thermotolerance of plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Etilenos/metabolismo , Resposta ao Choque Térmico , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Modelos Biológicos , Mutação/genética , Ligação Proteica , Transdução de Sinais , Termotolerância/genética , Fatores de Transcrição/genética
17.
Plant Direct ; 4(9): e00263, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32995702

RESUMO

Strigolactones (SLs) are a diverse class of butenolide-bearing plant hormones associated with several processes of major agricultural concern. SLs initiate symbiosis between plants and arbuscular mycorrhizal fungi, cause germination of crop-devastating parasitic plants, and inhibit shoot branching in vascular plants. SLs are perceived by dual receptor-hydrolase proteins, and capturing the intact ligand inside the receptor remains a key challenge for structural biologists. In addition, many discovered SLs are hard to obtain and too unstable to work with. In a computer-based approach, we investigated the interaction of 20 different SL molecules with nine crystal structures of SL receptors. Our results suggest an important role of the active site for ligand binding and orientation, and that the parasitic plant Striga hermonthica has developed both promiscuous and type-specific SL receptors as part of its host recognition strategy.

18.
Trends Plant Sci ; 25(4): 395-405, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31948791

RESUMO

Strigolactones (SLs) are a class of plant hormones involved in several biological processes that are of great agricultural concern. While initiating plant-fungal symbiosis, SLs also trigger germination of parasitic plants that pose a major threat to farming. In vascular plants, SLs control shoot branching, which is linked to crop yield. SL research has been a fascinating field that has produced a variety of different signaling models, reflecting a complex picture of hormone perception. Here, we review recent developments in the SL field and the crystal structures that gave rise to various models of receptor activation. We also highlight the increasing number of discovered SL molecules, reflecting the existence of cross-kingdom SL communication.


Assuntos
Lactonas , Reguladores de Crescimento de Plantas , Germinação , Transdução de Sinais , Simbiose
19.
Cell Host Microbe ; 26(2): 163-172, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31415749

RESUMO

Plants are under relentless challenge by pathogenic bacteria, fungi, and oomycetes, for whom they provide a resource of living space and nutrients. Upon detection of pathogens, plants carry out multiple layers of defense response, orchestrated by a tightly organized network of hormones. In this review, we provide an overview of the phytohormones involved in immunity and the ways pathogens manipulate their biosynthesis and signaling pathways. We highlight recent developments, including the discovery of a defense signaling molecule, new insights into hormone biosynthesis, and the increasing importance of signaling hubs at which hormone pathways intersect.


Assuntos
Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/imunologia , Imunidade Vegetal/imunologia , Plantas/imunologia , Ácido Abscísico , Brassinosteroides , Ciclopentanos , Citocininas , Etilenos , Fungos , Giberelinas , Ácidos Indolacéticos , Oomicetos , Oxilipinas , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico , Transdução de Sinais
20.
Commun Biol ; 2: 16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30623108

RESUMO

[This corrects the article DOI: 10.1038/s42003-018-0214-4.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...