Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
ACS Synth Biol ; 13(5): 1434-1441, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38695987

RESUMO

Enzymatic cascades have become a green and sustainable approach for the synthesis of valuable chemicals and pharmaceuticals. Using sequential enzymes to construct a multienzyme complex is an effective way to enhance the overall performance of biosynthetic routes. Here we report the design of an efficient in vitro hybrid biocatalytic system by assembling three enzymes that can convert styrene to (S)-1-phenyl-1,2-ethanediol. Specifically, we prepared the three enzymes in different ways, which were cell surface-displayed, purified, and cell-free expressed. To assemble them, we fused two orthogonal peptide-protein pairs (i.e., SpyTag/SpyCatcher and SnoopTag/SnoopCatcher) to the three enzymes, allowing their spatial organization by covalent assembly. By doing this, we constructed a multienzyme complex, which could enhance the production of (S)-1-phenyl-1,2-ethanediol by 3 times compared to the free-floating enzyme system without assembly. After optimization of the reaction system, the final product yield reached 234.6 µM with a substrate conversion rate of 46.9% (based on 0.5 mM styrene). Taken together, our strategy integrates the merits of advanced biochemical engineering techniques, including cellular surface display, spatial enzyme organization, and cell-free expression, which offers a new solution for chemical biosynthesis by enzymatic cascade biotransformation. We, therefore, anticipate that our approach will hold great potential for designing and constructing highly efficient systems to synthesize chemicals of agricultural, industrial, and pharmaceutical significance.


Assuntos
Biocatálise , Sistema Livre de Células , Estireno/metabolismo , Estireno/química , Escherichia coli/genética , Escherichia coli/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo
2.
Nat Commun ; 15(1): 4336, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773100

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with diverse chemical structures and potent biological activities. A vast majority of RiPP gene clusters remain unexplored in microbial genomes, which is partially due to the lack of rapid and efficient heterologous expression systems for RiPP characterization and biosynthesis. Here, we report a unified biocatalysis (UniBioCat) system based on cell-free gene expression for rapid biosynthesis and engineering of RiPPs. We demonstrate UniBioCat by reconstituting a full biosynthetic pathway for de novo biosynthesis of salivaricin B, a lanthipeptide RiPP. Next, we delete several protease/peptidase genes from the source strain to enhance the performance of UniBioCat, which then can synthesize and screen salivaricin B variants with enhanced antimicrobial activity. Finally, we show that UniBioCat is generalizable by synthesizing and evaluating the bioactivity of ten uncharacterized lanthipeptides. We expect UniBioCat to accelerate the discovery, characterization, and synthesis of RiPPs.


Assuntos
Sistema Livre de Células , Processamento de Proteína Pós-Traducional , Ribossomos , Ribossomos/metabolismo , Ribossomos/genética , Peptídeos/metabolismo , Peptídeos/genética , Peptídeos/química , Vias Biossintéticas/genética , Família Multigênica , Biocatálise
3.
Biotechnol J ; 19(4): e2400114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622790

RESUMO

Molecular cloning facilitates the assembly of heterologous DNA fragments with vectors, resulting in the generation of plasmids that can steadily replicate in host cells. To efficiently and accurately screen out the expected plasmid candidates, various methods, such as blue-white screening, have been developed for visualization. However, these methods typically require additional genetic manipulations and costs. To simplify the process of visualized molecular cloning, here we report Rainbow Screening, a method that combines Gibson Assembly with chromoproteins to distinguish Escherichia coli (E. coli) colonies by naked eyes, eliminating the need for additional genetic manipulations or costs. To illustrate the design, we select both E. coli 16s rRNA and sfGFP expression module as two inserted fragments. Using Rainbow Screening, false positive colonies can be easily distinguished on LB-agar plates. Moreover, both the assembly efficiency and the construct accuracy can exceed 80%. We anticipate that Rainbow Screening will enrich the molecular cloning methodology and expand the application of chromoproteins in biotechnology and synthetic biology.


Assuntos
DNA , Escherichia coli , Escherichia coli/genética , RNA Ribossômico 16S , Clonagem Molecular , Plasmídeos , DNA/genética , Vetores Genéticos
4.
Front Oncol ; 14: 1337579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505593

RESUMO

Breast cancer (BC) is the most common malignancy among women and a leading cause of cancer-related deaths of females worldwide. It is a complex and molecularly heterogeneous disease, with various subtypes that require different treatment strategies. Despite advances in high-resolution single-cell and multinomial technologies, distant metastasis and therapeutic resistance remain major challenges for BC treatment. Long non-coding RNAs (lncRNAs) are non-coding RNAs with more than 200 nucleotides in length. They act as competing endogenous RNAs (ceRNAs) to regulate post-transcriptional gene stability and modulate protein-protein, protein-DNA, and protein-RNA interactions to regulate various biological processes. Emerging evidence suggests that lncRNAs play essential roles in human cancers, including BC. In this review, we focus on the roles and mechanisms of lncRNAs in BC progression, metastasis, and treatment resistance, and discuss their potential value as therapeutic targets. Specifically, we summarize how lncRNAs are involved in the initiation and progression of BC, as well as their roles in metastasis and the development of therapeutic resistance. We also recapitulate the potential of lncRNAs as diagnostic biomarkers and discuss their potential use in personalized medicine. Finally, we provide lncRNA-based strategies to promote the prognosis of breast cancer patients in clinical settings, including the development of novel lncRNA-targeted therapies.

5.
Open Life Sci ; 19(1): 20220803, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299011

RESUMO

Low-carbohydrate diets (LCDs) are frequently recommended for alleviating obesity, and the gut microbiota plays key roles in energy metabolism and weight loss. However, there is limited in-human research on how LCD changes gut microbiota. In this before-after study, 43 participants were assigned to the LCD intervention for 4 weeks. The main objective was to investigate the specific changes that occur in the participants' microbiome in response to the LCD. Changes in gut microbiota were analyzed using 16s rRNA sequencing. Body composition was measured using InBody 770. Remarkably, 35 participants (79.07%) lost more than 5% of their body weight; levels of BMI, body fat, and total cholesterol were significantly decreased, indicating the effectiveness of the LCD intervention. The richness of microbiota significantly increased after the intervention. By taking the intersection of ANOVA and linear discriminant analysis effect size (LEfSe) analysis results, we identified three phyla, three classes, four orders, five families, and six genera that were differentially enriched between baseline and week-4 time points. Among the three phyla, relative abundances of Firmicutes and Actinobacteriota decreased significantly, while Bacteroidetes increased significantly. At the genus level, Ruminococcus, Agathobacter, Streptococcus, and Bifidobacterium showed a significant reduction in relative abundances, whereas Parabacteroides and Bacteroides increased steadily. Our results demonstrate that LCD can effectively alleviate obesity and modify certain taxa of gut microbiota, providing potential insights for personalized dietary interventions against obesity.

6.
Biotechnol J ; 19(1): e2300327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37800393

RESUMO

Escherichia coli Nissle 1917 (EcN) is a probiotic microbe that has the potential to be developed as a promising chassis for synthetic biology applications. However, the molecular tools and techniques for utilizing EcN remain to be further explored. To address this opportunity, the EcN-based toolbox was systematically expanded, enabling EcN as a powerful platform for more applications. First, two EcN cryptic plasmids and other compatible plasmids were genetically engineered to enrich the manipulable plasmid toolbox for multiple gene coexpression. Next, two EcN-based technologies were developed, including the conjugation strategy for DNA transfer, and quantification of protein expression capability. Finally, the EcN-based applications were further expanded by developing EcN native integrase-mediated genetic engineering and establishing an in vitro cell-free protein synthesis (CFPS) system. Overall, this study expanded the toolbox for manipulating and making full use of EcN as a commonly used probiotic chassis, providing several simplified, dependable, and predictable strategies for researchers working in synthetic biology fields.


Assuntos
Escherichia coli , Probióticos , Escherichia coli/genética , Escherichia coli/metabolismo , Biologia Sintética , Engenharia Genética/métodos , Plasmídeos/genética
7.
J Neurol ; 271(2): 962-975, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902878

RESUMO

BACKGROUND: Within the spectrum of Lewy body disorders (LBD), both Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by gait and balance disturbances, which become more prominent under dual-task (DT) conditions. The brain substrates underlying DT gait variations, however, remain poorly understood in LBD. OBJECTIVE: To investigate the relationship between gray matter volume loss and DT gait variations in LBD. METHODS: Seventy-nine participants including cognitively unimpaired PD, PD with mild cognitive impairment, PD with dementia (PDD), or DLB and 20 cognitively unimpaired controls were examined across a multi-site study. PDD and DLB were grouped together for analyses. Differences in gait speed between single and DT conditions were quantified by dual task cost (DTC). Cortical, subcortical, ventricle, and cerebellum brain volumes were obtained using FreeSurfer. Linear regression models were used to examine the relationship between gray matter volumes and DTC. RESULTS: Smaller amygdala and total cortical volumes, and larger ventricle volumes were associated with a higher DTC across LBD and cognitively unimpaired controls. No statistically significant interaction between group and brain volumes were found. Adding cognitive and motor covariates or white matter hyperintensity volumes separately to the models did not affect brain volume and DTC associations. CONCLUSION: Gray matter volume loss is associated with worse DT gait performance compared to single task gait, across cognitively unimpaired controls through and the LBD spectrum. Impairment in DT gait performance may be driven by age-related cortical neurodegeneration.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Envelhecimento , Doença de Alzheimer/complicações , Marcha , Substância Cinzenta/diagnóstico por imagem , Corpos de Lewy , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/complicações , Doença de Parkinson/complicações
8.
Adv Mater ; 35(42): e2305583, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37498452

RESUMO

Living materials represent a new frontier in functional material design, integrating synthetic biology tools to endow materials with programmable, dynamic, and life-like characteristics. However, a major challenge in creating living materials is balancing the tradeoff between structural stability, mechanical performance, and functional programmability. To address this challenge, a sheath-core living hydrogel fiber platform that synergistically integrates living bacteria with hydrogel fibers to achieve both functional diversity and structural and mechanical robustness is proposed. In the design, microfluidic spinning is used to produce hydrogel fiber, which offers advantages in both structural and functional designability due to their hierarchical porous architectures that can be tailored and their mechanical performance that can be enhanced through a variety of post-processing approaches. By introducing living bacteria, the platform is endowed with programmable functionality and life-like capabilities. This work reconstructs the genetic circuits of living bacteria to express chromoproteins and fluorescent proteins as two prototypes that enable the coloration of living fibers and sensing water pollutants by monitoring the amount of fluorescent protein expressed. Altogether, this study establishes a structure-property-function optimized living hydrogel fiber platform, providing a new tool for accelerating the practical applications of the emerging living material systems.


Assuntos
Bioengenharia , Hidrogéis , Hidrogéis/química , Bactérias
9.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166814, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37495085

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease. Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic tool in PD. High-throughput sequencing was performed to screen potential therapeutic targets in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. The candidate gene, Clec7a, was screened out and validated. Clec7a is a pattern recognition receptor involved in neuroinflammation. The higher expression of Clec7a was observed in the substantia nigra (SN) and striatum of PD rats with dopaminergic neurons damage and was mainly localized in the microglial. Adeno-associated virus (AAV)-mediated specific knockdown of Clec7a in microglial alleviated 6-OHDA induced motor deficits and nigrostriatal dopaminergic neuron damage of rats, as evidenced by the increase of tyrosine hydroxylase (TH) -positive neurons in SN, as well as dopaminergic nerve fibers in the striatum. Clec7a knockdown restrained the neuroinflammation by suppressing inflammatory factors (IFN-γ, TNF-α, IL-1ß, IL-18, and IL-6) release in SN, which might result from enhanced Arg-1 expression (M2 polarization) and defective inducible nitric oxide synthase (iNOS) expression (M1 polarization). The same phenomena were also observed in the LPS inflammatory rat model of PD. In vitro, α-synuclein fibrils induced upregulation of Clec7a expression and microglia polarization to a pro-inflammatory state of BV2 cells, leading to increased release of cytokines. However, Clec7a knockdown reversed those changes and induced a shift to an anti-inflammatory phenotype in BV2 cells. In conclusion, our study suggested that Clec7a was involved in PD pathogenesis, and its inhibition might protect rats from PD by depressing neuroinflammation through microglial polarization.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/genética , Doença de Parkinson/terapia , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Estimulação Magnética Transcraniana/efeitos adversos , Oxidopamina/toxicidade , Neurônios Dopaminérgicos/patologia
10.
Front Aging Neurosci ; 15: 1088050, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091522

RESUMO

Background: Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are part of a spectrum of Lewy body disorders, who exhibit a range of cognitive and gait impairments. Cognitive-motor interactions can be examined by performing a cognitive task while walking and quantified by a dual task cost (DTC). White matter hyperintensities (WMH) on magnetic resonance imaging have also been associated with both gait and cognition. Our goal was to examine the relationship between DTC and WMH in the Lewy body spectrum, hypothesizing DTC would be associated with increased WMH volume. Methods: Seventy-eight participants with PD, PD with mild cognitive impairment (PD-MCI), PD with dementia or DLB (PDD/DLB), and 20 cognitively unimpaired participants were examined in a multi-site study. Gait was measured on an electronic walkway during usual gait, counting backward, animal fluency, and subtracting sevens. WMH were quantified from magnetic resonance imaging using an automated pipeline and visual rating. A median split based on DTC was performed. Models included age as well as measures of global cognition and cardiovascular risk. Results: Compared to cognitively unimpaired participants, usual gait speed was lower and DTC was higher in PD-MCI and PDD/DLB. Low DTC participants had higher usual gait speed. WMH burden was greater in high counting DTC participants. Frontal WMH burden remained significant after adjusting for age, cardiovascular risk and global cognition. Conclusion: Increased DTC was associated with higher frontal WMH burden in Lewy body disorders after adjusting for age, cardiovascular risk, and global cognition. Higher DTC was associated with age.

11.
Adv Sci (Weinh) ; 10(14): e2207008, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36938858

RESUMO

Erythritol, one of the natural sugar alcohols, is widely used as a sugar substitute sweetener in food industries. Humans themselves are not able to catabolize erythritol and their gut microbes lack related catabolic pathways either to metabolize erythritol. Here, Escherichia coli (E. coli) is engineered to utilize erythritol as sole carbon source aiming for defined applications. First, the erythritol metabolic gene cluster is isolated and the erythritol-binding transcriptional repressor and its DNA-binding site are experimentally characterized. Transcriptome analysis suggests that carbohydrate metabolism-related genes in the engineered E. coli are overall upregulated. In particular, the enzymes of transaldolase (talA and talB) and transketolase (tktA and tktB) are notably overexpressed (e.g., the expression of tktB is improved by nearly sixfold). By overexpression of the four genes, cell growth can be increased as high as three times compared to the cell cultivation without overexpression. Finally, engineered E. coli strains can be used as a living detector to distinguish erythritol-containing soda soft drinks and can grow in the simulated intestinal fluid supplemented with erythritol. This work is expected to inspire the engineering of more hosts to respond and utilize erythritol for broad applications in metabolic engineering, synthetic biology, and biomedical engineering.


Assuntos
Eritritol , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Eritritol/metabolismo , Carbono , Fatores de Transcrição/genética , Engenharia Metabólica
12.
Biotechnol Bioeng ; 120(3): 793-802, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36510694

RESUMO

Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well-known reasons of metabolic burden (e.g., expression of large NRP synthetases-NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli. The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high-level biosynthesis of NRP natural products.


Assuntos
Antibacterianos , Escherichia coli , Valinomicina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vias Biossintéticas , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo
13.
Can J Neurol Sci ; 50(6): 853-860, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36351571

RESUMO

BACKGROUND: Quantitative susceptibility mapping (QSM) demonstrates elevated iron content in Parkinson's disease (PD) patients within the basal ganglia, though it has infrequently been studied in relation to gait difficulties including freezing of gait (FOG). Our purpose was to relate QSM of basal ganglia and extra-basal ganglia structures with qualitative and quantitative gait measures in PD. METHODS: This case-control study included PD and cognitively unimpaired (CU) participants from the Comprehensive Assessment of Neurodegeneration and Dementia study. Whole brain QSM was acquired at 3T. Region of interests (ROIs) were drawn blinded manually in the caudate nucleus, putamen, globus pallidus, pulvinar nucleus of the thalamus, red nucleus, substantia nigra, and dentate nucleus. Susceptibilities of ROIs were compared between PD and CU. Items from the FOG questionnaire and quantitative gait measures from PD participants were compared to susceptibilities. RESULTS: Twenty-nine participants with PD and 27 CU participants were included. There was no difference in susceptibility values in any ROI when comparing CU versus PD (p > 0.05 for all). PD participants with gait impairment (n = 23) had significantly higher susceptibility in the putamen (p = 0.008), red nucleus (p = 0.01), and caudate nucleus (p = 0.03) compared to those without gait impairment (n = 6). PD participants with FOG (n = 12) had significantly higher susceptibility in the globus pallidus (p = 0.03) compared to those without FOG (n = 17). Among quantitative gait measures, only stride time variability was significantly different between those with and without FOG (p = 0.04). CONCLUSION: Susceptibilities in basal ganglia and extra-basal ganglia structures are related to qualitative measures of gait impairment and FOG in PD.

14.
China CDC Wkly ; 4(45): 997-1001, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36483008

RESUMO

What is already known about this topic?: Dementia leads public health issues worldwide. China has the largest population of adults living with dementia in the world, imposing increasing burdens on the public health and healthcare systems. Despite improved access to health services, inadequate and uneven dementia management remains common. What is added by this report?: The report documents the provincial-level geographic patterns in healthcare utilization, outcomes, and costs for patients hospitalized for dementia in China. Regional patterns demonstrate gaps in equity and efficiency of dementia care and management for dementia patients. What are the implications for public health practice?: Public health policy and practices should consider geographic disparities in disease burden and healthcare provision to promote equitable allocation of resources for dementia care throughout China.

15.
NPJ Parkinsons Dis ; 8(1): 174, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543809

RESUMO

The brain glymphatic system is involved in the clearance of misfolding α-synuclein, the impaired glymphatic system may contribute to the progression of Parkinson's disease (PD). We aimed to analyze the diffusion tensor image along the perivascular space (DTI-ALPS) and perivascular space (PVS) burden to reveal the relationship between the glymphatic system and PD. A cross-sectional study using a 7 T MRI of 76 PD patients and 48 controls was performed to evaluate the brain's glymphatic system. The DTI-ALPS and PVS burden in basal ganglia were calculated. Correlation analyses were conducted between DTI-ALPS, PVS burden and clinical features. We detected lower DTI-ALPS in the PD subgroup relative to controls, and the differences were more pronounced in patients with Hoehn & Yahr stage greater than two. The decreased DTI-ALPS was only evident in the left hemisphere in patients in the early stage but involved both hemispheres in more advanced PD patients. Decreased DTI-ALPS were also correlated with longer disease duration, higher Unified Parkinson's Disease Rating Scale motor score (UPDRS III) and UPDRS total scores, as well as higher levodopa equivalent daily dose. Moreover, the decreased DTI-ALPS correlated with increased PVS burden, and both indexes correlated with PD disease severity. This study demonstrated decreased DTI-ALPS in PD, which might initiate from the left hemisphere and progressively involve right hemisphere with the disease progression. Decreased DTI-ALPS index correlated with increased PVS burden, indicating that both metrics could provide supporting evidence of an impaired glymphatic system. MRI evaluation of the PVS burden and diffusion along PVS are potential imaging biomarkers for PD for disease progression.

16.
Adv Sci (Weinh) ; 9(34): e2203652, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36180388

RESUMO

In nature, biological compartments such as cells rely on dynamically controlled permeability for matter exchange and complex cellular activities. Likewise, the ability to engineer compartment permeability is crucial for in vitro systems to gain sustainability, robustness, and complexity. However, rendering in vitro compartments such a capability is challenging. Here, a facile strategy is presented to build permeability-configurable compartments, and marked advantages of such compartmentalization are shown in reconstituting sustained synthetic biology systems in vitro. Through microfluidics, the strategy produces micrometer-sized layered microgels whose shell layer serves as a sieving structure for biomolecules and particles. In this configuration, the transport of DNAs, proteins, and bacteriophages across the compartments can be controlled an guided by a physical model. Through permeability engineering, a compartmentalized cell-free protein synthesis system sustains multicycle protein production; ≈100 000 compartments are repeatedly used in a five-cycle synthesis, featuring a yield of 2.2 mg mL-1 . Further, the engineered bacteria-enclosing compartments possess near-perfect phage resistance and enhanced environmental fitness. In a complex river silt environment, compartmentalized whole-cell biosensors show maintained activity throughout the 32 h pollutant monitoring. It is anticipated that permeability-engineered compartmentalization should pave the way for practical synthetic biology applications such as green bioproduction, environmental sensing, and bacteria-based therapeutics.


Assuntos
Exercício Físico , Biologia Sintética , Microfluídica
17.
Front Neurosci ; 16: 930810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017180

RESUMO

Background: Gait disturbances are critical motor symptoms in Parkinson's disease (PD). The mechanisms of gait impairment in PD are not entirely understood but likely involve changes in the Pedunculopontine Nucleus (PPN), a critical locomotion center, and its associated connections. Exercise is universally accepted as helpful in PD, but the extent and intensity of exercise required for plastic changes are unclear. Methods: Twenty-seven PD subjects participated in a 3-month gait training intervention. Clinical assessments and resting-state functional magnetic resonance imaging were performed at baseline and 3 months after exercise. Functional connectivity of PPN was assessed by combining the methods of partial least squares, conditional dependence and partial correlation. In addition, paired t-tests were used to examine the effect of exercise on PPN functional connectivity and clinical measures, and Pearson's correlation was used to assess the association between altered PPN functional connectivity and clinical measures. Results: Exercise significantly improved Unified Parkinson's Disease Rating Scale-III (UPDRS-III). A significant increase in right PPN functional connectivity was observed after exercise, which did not correlate with motor improvement. However, the decrease in left PPN functional connectivity significantly correlated with the improvement in UPDRS-III and was linearly related to both number of walks and the duration of walks. In addition, exercise induced a significant increase in the laterality of PPN connectivity strength, which correlated with motor improvement. Conclusion: PPN functional connectivity is modifiable by walking exercise in both a dose-independent (right PPN and laterality of PPN connectivity strength) and dose-dependent (left PPN) manner. The PPN may contribute to pathological and compensatory processes in PD gait control. The observed gait improvement by walking exercise is most likely due to the reversal of the maladaptive compensatory mechanism. Altered PPN functional connectivity can be a marker for exercise-induced motor improvement in PD.

18.
Neurology ; 99(11): 480-483, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35803716

RESUMO

Holmes tremor (HT), also known as midbrain, rubral, or cerebellar pathway outflow tremor, occurs because of disturbances of the cerebellothalamic pathway. This tremor is usually related to lesions in the midbrain peduncular region involving the superior cerebellar peduncle, the red nucleus, and possibly the nigrostriatal circuitry. Common etiologies resulting in HT include tumor, ischemia, and demyelination. We report a case of progressive left-sided HT in an otherwise healthy man with additional symptoms of parkinsonism, hypoesthesia, right oculomotor nerve palsy, cognitive dysfunction, and hypersomnolence. Imaging investigations revealed a right-sided thalamic and midbrain glioma. Dopamine transport imaging demonstrated significant dopaminergic denervation in the right caudate and putamen. The degree of striatal dopamine transporter deficiency was more severe than expected in a patient with Parkinson disease. A trial of dopaminergic agent resulted in significant improvement of the tremor and associated symptoms. Interruption of the nigrostriatal pathway can occur in cases of HT because of midbrain peduncular lesion. The striatal dopaminergic function imaging may have a role in assessing presynaptic dopamine dysfunction and guiding treatment.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Ataxia/complicações , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Masculino , Tomografia Computadorizada de Emissão de Fóton Único , Tremor/diagnóstico por imagem , Tremor/tratamento farmacológico , Tremor/etiologia
19.
Front Aging Neurosci ; 14: 874692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875799

RESUMO

Background: Gait impairment is a debilitating and progressive feature of Parkinson's disease (PD). Increasing evidence suggests that gait control is partly mediated by cholinergic signaling from the pedunculopontine nucleus (PPN). Objective: We investigated whether PPN structural connectivity correlated with quantitative gait measures in PD. Methods: Twenty PD patients and 15 controls underwent diffusion tensor imaging to quantify structural connectivity of the PPN. Whole brain analysis using tract-based spatial statistics and probabilistic tractography were performed using the PPN as a seed region of interest for cortical and subcortical target structures. Gait metrics were recorded in subjects' medication ON and OFF states, and were used to determine if specific features of gait dysfunction in PD were related to PPN structural connectivity. Results: Tract-based spatial statistics revealed reduced structural connectivity involving the corpus callosum and right superior corona radiata, but did not correlate with gait measures. Abnormalities in PPN structural connectivity in PD were lateralized to the right hemisphere, with pathways involving the right caudate nucleus, amygdala, pre-supplementary motor area, and primary somatosensory cortex. Altered connectivity of the right PPN-caudate nucleus was associated with worsened cadence, stride time, and velocity while in the ON state; altered connectivity of the right PPN-amygdala was associated with reduced stride length in the OFF state. Conclusion: Our exploratory analysis detects a potential correlation between gait dysfunction in PD and a characteristic pattern of connectivity deficits in the PPN network involving the right caudate nucleus and amygdala, which may be investigated in future larger studies.

20.
Front Aging Neurosci ; 14: 783773, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211005

RESUMO

BACKGROUND: Parkinson's disease (PD) is not exclusively a motor disorder. Among non-motor features, patients with PD possess sensory visual dysfunctions. Depth perception and oculomotor deficits can significantly impact patients' motor performance. Stereopsis and eye behavioral study using 3D stimuli may help determine their implications in disease status. OBJECTIVE: The objective of this study is to investigate stereopsis and eye movement abnormalities in PD with reliable tools and their correlation with indicators of PD severity. We hypothesize that patients with PD exhibit different eye behaviors and that these differences may correlate to the severity of motor symptoms and cognitive status. METHODS: Control and PD participants were first evaluated for visual acuity, visual field, contrast acuity, and stereo perception with 2D and Titmus stereotests, followed by the assessment with a 3D active shutter system. Eye movement behaviors were assessed by a Tobii X2-60 eye tracker. RESULTS: Screening visual tests did not reveal any differences between the PD and control groups. With the 3D active shutter system, the PD group demonstrated significantly worse stereopsis. The preserved cognitive function was correlated to a more intact stereo function. Patients with PD had longer visual response times, with a higher number of fixations and bigger saccade amplitude, suggesting fixation stabilization difficulties. Such changes showed a positive correlation with the severity of motor symptoms and a negative correlation with normal cognitive status. CONCLUSION: We assessed stereopsis with a 3D active shutter system and oculomotor behaviors with the Tobii eye tracker. Patients with PD exhibit poorer stereopsis and impaired oculomotor behaviors during response time. These deficits were correlated with PD motor and cognitive status. The visual parameters may potentially serve as the clinical biomarkers for PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...