Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncolytics ; 24: 772-787, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35317523

RESUMO

Pentraxin 3 (PTX3) is an inflammatory molecule that is closely related to the proliferation, invasion, and metastasis of cancer. In order to explore the role of PTX3 in the occurrence and development of esophageal carcinoma (ESCA), we modified the PTX3 gene in ESCA cell lines to obtain the model of gene knockout and overexpression and studied cell proliferation, cycle, apoptosis, migration ability, energy metabolism, and sensitivity to chemotherapy and radiotherapy. We observed the increase in cell proliferation, cycle, apoptosis, migration ability, and sensitivity to chemotherapy and radiotherapy in the PTX3 knockout model, while in the PTX3 overexpression model, these phenomena were significantly reduced. Knockout of the PTX3 also resulted in decreased cell glycolysis and increased oxidative phosphorylation, which is consistent with other findings that PTX3 affects the tumorigenic ability of cells and their sensitivity to docetaxel. In ESCA, SOX9 directly regulates the expression of PTX3, while human leukocyte antigen (HLA)-system-related genes are significantly up-regulated when lacking PTX3. These results indicate that SOX9 may play a crucial role in regulating PTX3 and affecting the HLA system in ESCA.

2.
Research (Wash D C) ; 2021: 9817062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34870228

RESUMO

Recently, triboelectric nanogenerators (TENGs) have been promoted as an effective technique for ambient energy harvesting, given their large power density and high energy conversion efficiency. However, traditional TENGs based on the combination of triboelectrification effect and electrostatic induction have proven susceptible to environmental influence, which intensively restricts their application range. Herein, a new coupling mechanism based on electrostatic induction and ion conduction is proposed to construct flexible stable output performance TENGs (SOP-TENGs). The calcium chloride doped-cellulose nanofibril (CaCl2-CNF) film made of natural carrots was successfully introduced to realize this coupling, resulting from its intrinsic properties as natural nanofibril hydrogel serving as both triboelectric layer and electrode. The coupling of two conductive mechanisms of SOP-TENG was comprehensively investigated through electrical measurements, including the effects of moisture content, relative humidity, and electrode size. In contrast to the conventional hydrogel ionotronic TENGs that require moisture as the carrier for ion transfer and use a hydrogel layer as the electrode, the use of a CaCl2-CNF film (i.e., ion-doped natural hydrogel layer) as a friction layer in the proposed SOP-TENG effectively realizes a superstable electrical output under varying moisture contents and relative humidity due to the compound transfer mechanism of ions and electrons. This new working principle based on the coupling of electrostatic induction and ion conduction opens a wider range of applications for the hydrogel ionotronic TENGs, as the superstable electrical output enables them to be more widely applied in various complex environments to supply energy for low-power electronic devices.

3.
ACS Appl Mater Interfaces ; 12(38): 42859-42867, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32856889

RESUMO

As emerging ambient energy harvesting technology, triboelectric nanogenerators (TENGs) have proven to be a robust power source and have demonstrated the unique ability to power micro-nano electronics autonomously to form self-powered devices. Although four working modes of TENGs have been developed to promote the feasibility of self-powered micro-nano systems, the relatively complicated structure composed of multilayer and movable components limits the practical applications of TENGs. Herein, we propose a single-layer triboelectric nanogenerator (SL-TENG) based on ion-doped natural nanofibrils. Compared with the simplest mode of currently existing TENGs, i.e., the single-electrode type, this novel single-electrode TENG further simplifies the configuration by the removal of the dielectric layer. The underlying mechanism of the proposed SL-TENG is comprehensively investigated through electrical measurements and the analysis of the effect of ion species at different concentrations. In contrast to conventional TENGs that require electrodes to realize charge transfer, it is revealed that the ions doped into natural nanofibrils effectively realize charge transfer due to the separation and migration of cations and anions. This new working principle based on the combination of electrons and ions enables TENGs to show greater potential for applications since the ultrasimple single-layer configuration enables them to be more easily integrated with other electronic components; additionally, the whole device of the proposed SL-TENG is biodegradable because the natural nanofibrils are completely extracted from carrots.

4.
Langmuir ; 36(1): 340-353, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31851519

RESUMO

Wettability-confined tracks have been extensively used in open-surface microfluidic devices for their high capacity of transporting droplet pumplessly. Inspired by the experimental work of Sen et al. [ Langmuir 2018 , 34 , 1899 - 1907 ], in the present study, a three-dimensional phase-field lattice Boltzmann model is developed and used to investigate the spreading behaviors of microdroplet on a series of wettability-confined tracks. The experimental findings are successfully reproduced through our simulation, where three distinct stages of droplet spreading on the horizontal wettability-confined diverging track are fairly exhibited, that is, the initial stage with droplet front spreading quickly, the intermediate stage with both droplet front and bulge moving forward at a constant speed, and the final stage with droplet front decelerating gradually. Moreover, a parametric study of track divergence angle is further performed, and the influential mechanism of track divergence angle on droplet spreading is further revealed. It is demonstrated that track divergence is responsible for the Laplace pressure gradient and capillary force inside the droplet, which drives the droplet bulge to move forward on the diverging track. With an increase in divergence angle, the capillary force increases linearly, which increases the droplet spreading speed at the initial and intermediate stages, while the peak capillary force comes earlier, and consequently the final decelerating stage comes earlier. On the basis of the parametric study and droplet volume conservation rule, a power law relation between track divergence angle and droplet spreading is proposed, which helps to identify the start of final decelerating stage. Finally, the droplet spreading over various inclined tracks is explored, which can be achieved only when the capillary force at the beginning is larger than the droplet gravity component along the inclined track surface.

5.
Langmuir ; 35(24): 7858-7870, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31120757

RESUMO

Surfactants are widely used in many industrial processes, where the presence of surfactants not only reduces the interfacial tension between fluids but also alters the wetting properties of solid surfaces. To understand how the surfactants influence the droplet motion on a solid surface, a hybrid method for interfacial flows with insoluble surfactants and contact-line dynamics is developed. This method solves immiscible two-phase flows through a lattice Boltzmann color-gradient model and simultaneously solves the convection-diffusion equation for surfactant concentration through a finite difference method. In addition, a dynamic contact angle formulation that describes the dependence of the local contact angle on the surfactant concentration is derived, and the resulting contact angle is enforced by a geometrical wetting condition. Our method is first used to simulate static contact angles for a droplet resting on a solid surface, and the results show that the presence of surfactants can significantly modify surface wettability, especially when the surface is more hydrophilic or more hydrophobic. This is then applied to simulate a surfactant-laden droplet moving on a substrate subject to a linear shear flow for varying effective capillary number ( Cae), Reynolds number ( Re), and surface wettability, where the results are often compared with those of a clean droplet. For varying Cae, the simulations are conducted by considering a neutral surface. At low values of Cae, the droplet eventually reaches a steady deformation and moves at a constant velocity. In either a clean or surfactant-laden case, the moving velocity of the droplet linearly increases with the moving wall velocity, but the slope is always higher (i.e., the droplet moves faster) in the surfactant-laden case where the droplet exhibits a bigger deformation. When Cae is increased beyond a critical value ( Cae,c), the droplet breakup would happen. The presence of surfactants is found to decrease the value of Cae,c, but it shows a non-monotonic effect on the droplet breakup. An increase in Re is able to increase not only droplet deformation but also surfactant dilution. The role of surfactants in the droplet behavior is found to greatly depend upon the surface wettability. For a hydrophilic surface, the presence of surfactants can decrease the wetting length and enables the droplet to reach a steady state faster; while for a hydrophobic surface, it increases the wetting length and delays the departure of the droplet from the solid surface.

6.
Phys Rev E ; 97(3-1): 033307, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29776031

RESUMO

In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.

7.
Soft Matter ; 14(5): 837-847, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29308826

RESUMO

Inspired by the experimental work of Raj et al. (high-resolution liquid patterns via three-dimensional droplet shape control), in the present study, a three-dimensional multiphase color-gradient lattice Boltzmann model developed previously by some of the authors is used to simulate droplet dynamic behaviors with different surface micro-pillar arrays. To facilitate the present simulation, wetting boundary conditions are used and the accuracy of color gradient prediction at boundary nodes is enhanced. The experimental findings are confirmed and non-circular contact lines are reproduced numerically for the first time. To justify the existing contact angle formula proposed based on the Wenzel model, a systematic parametric study is conducted, based on which the pillar density is redefined to allow for the influence of pillar height, and then it is used to modify the contact angle. In addition, the evolution of the contact line motion for various droplet shapes is investigated systematically, and both circular and non-circular contact characteristics are well-depicted for different surface micro-pillar arrays.

8.
Phys Rev E ; 94(2-1): 023310, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627415

RESUMO

In this paper we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multirelaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulated with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike and bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.

9.
Artigo em Inglês | MEDLINE | ID: mdl-24229303

RESUMO

Lattice Boltzmann method (LBM) is an effective tool for simulating the contact-line motion due to the nature of its microscopic dynamics. In contact-line motion, contact-angle hysteresis is an inherent phenomenon, but it is neglected in most existing color-gradient based LBMs. In this paper, a color-gradient based multiphase LBM is developed to simulate the contact-line motion, particularly with the hysteresis of contact angle involved. In this model, the perturbation operator based on the continuum surface force concept is introduced to model the interfacial tension, and the recoloring operator proposed by Latva-Kokko and Rothman is used to produce phase segregation and resolve the lattice pinning problem. At the solid surface, the color-conserving wetting boundary condition [Hollis et al., IMA J. Appl. Math. 76, 726 (2011)] is applied to improve the accuracy of simulations and suppress spurious currents at the contact line. In particular, we present a numerical algorithm to allow for the effect of the contact-angle hysteresis, in which an iterative procedure is used to determine the dynamic contact angle. Numerical simulations are conducted to verify the developed model, including the droplet partial wetting process and droplet dynamical behavior in a simple shear flow. The obtained results are compared with theoretical solutions and experimental data, indicating that the model is able to predict the equilibrium droplet shape as well as the dynamic process of partial wetting and thus permits accurate prediction of contact-line motion with the consideration of contact-angle hysteresis.

10.
Zhongguo Zhen Jiu ; 30(11): 960-2, 2010 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-21246859

RESUMO

DOU Han-qing's academic thought of acupuncture and moxibustion are analyzed, which include "eight confluence points", sensation of qi arrival, 14 manipulations for promotion of qi sensation, point selection, needling technique and observation of the psychological condition of patients. DOU's inheritance and development of Huangdi Neijing (Internal Classic) and Nanjing (Classics on Medical Problems) as well as his influences on the later schools are approved to have great value and significance on the enhancement of clinical effect and development of acupuncture and moxibustion sciences.


Assuntos
Terapia por Acupuntura/história , Acupuntura/educação , Moxibustão/história , Acupuntura/história , China , História Antiga , Humanos
11.
Beijing Da Xue Xue Bao Yi Xue Ban ; 38(5): 551-4, 2006 Oct 18.
Artigo em Chinês | MEDLINE | ID: mdl-17068634

RESUMO

Mutant or aberrant regulation of expressing products of p53 gene results in losing its tumor suppressive function, which is often seen in many malignancies, including breast cancer. Oncoprotein MDM2 plays a primary role in regulating P53, and these two form an automregulatory feedback loop. mdm2/p53 passway performs important function in development, progression,therapy and prognosis of breast cancer. Besides, more and more studies show that some other molecular markers in breast cancer, such as PI3K/Akt/mTOR, p14ARF, and Her2/neu can regulate this passway unneglectedly. The purpose of this review is to summarize not only the relations between mdm2/p53 passway and pathological characters, therapy and prognosis of breast cancer, but also the relations of this passway with some other molecular proteins in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Mamárias Animais/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Mamárias Animais/genética , Camundongos , Modelos Biológicos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...