Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915633

RESUMO

Bacterial viruses (known as "phages") shape the ecology and evolution of microbial communities, making them promising targets for microbiome engineering. However, knowledge of phage biology is constrained because it remains difficult to study phage transmission dynamics within multi-member communities and living animal hosts. We therefore created "Phollow": a live imaging-based approach for tracking phage replication and spread in situ with single-virion resolution. Combining Phollow with optically transparent zebrafish enabled us to directly visualize phage outbreaks within the vertebrate gut. We observed that virions can be rapidly taken up by intestinal tissues, including by enteroendocrine cells, and quickly disseminate to extraintestinal sites, including the liver and brain. Moreover, antibiotics trigger waves of interbacterial transmission leading to sudden shifts in spatial organization and composition of defined gut communities. Phollow ultimately empowers multiscale investigations connecting phage transmission to transkingdom interactions that have the potential to open new avenues for viral-based microbiome therapies.

2.
mSphere ; 4(3)2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142622

RESUMO

Bacteria are often found living in aggregated multicellular communities known as biofilms. Biofilms are three-dimensional structures that confer distinct physical and biological properties to the collective of cells living within them. We used agent-based modeling to explore whether local cellular interactions were sufficient to give rise to global structural features of biofilms. Specifically, we asked whether chemorepulsion from a self-produced quorum-sensing molecule, autoinducer-2 (AI-2), was sufficient to recapitulate biofilm growth and cellular organization observed for biofilms of Helicobacter pylori, a common bacterial resident of human stomachs. To carry out this modeling, we modified an existing platform, Individual-based Dynamics of Microbial Communities Simulator (iDynoMiCS), to incorporate three-dimensional chemotaxis, planktonic cells that could join or leave the biofilm structure, and cellular production of AI-2. We simulated biofilm growth of previously characterized H. pylori strains with various AI-2 production and sensing capacities. Using biologically plausible parameters, we were able to recapitulate both the variation in biofilm mass and cellular distributions observed with these strains. Specifically, the strains that were competent to chemotax away from AI-2 produced smaller and more heterogeneously spaced biofilms, whereas the AI-2 chemotaxis-defective strains produced larger and more homogeneously spaced biofilms. The model also provided new insights into the cellular demographics contributing to the biofilm patterning of each strain. Our analysis supports the idea that cellular interactions at small spatial and temporal scales are sufficient to give rise to larger-scale emergent properties of biofilms.IMPORTANCE Most bacteria exist in aggregated, three-dimensional structures called biofilms. Although biofilms play important ecological roles in natural and engineered settings, they can also pose societal problems, for example, when they grow in plumbing systems or on medical implants. Understanding the processes that promote the growth and disassembly of biofilms could lead to better strategies to manage these structures. We had previously shown that Helicobacter pylori bacteria are repulsed by high concentrations of a self-produced molecule, AI-2, and that H. pylori mutants deficient in AI-2 sensing form larger and more homogeneously spaced biofilms. Here, we used computer simulations of biofilm formation to show that local H. pylori behavior of repulsion from high AI-2 could explain the overall architecture of H. pylori biofilms. Our findings demonstrate that it is possible to change global biofilm organization by manipulating local cell behaviors, which suggests that simple strategies targeting cells at local scales could be useful for controlling biofilms in industrial and medical settings.


Assuntos
Biofilmes/crescimento & desenvolvimento , Quimiotaxia , Simulação por Computador , Helicobacter pylori/fisiologia , Fenômenos Fisiológicos Bacterianos , Homosserina/análogos & derivados , Homosserina/metabolismo , Lactonas/metabolismo , Percepção de Quorum
3.
J Undergrad Neurosci Educ ; 16(1): A23-A27, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29371837

RESUMO

Undergraduate courses in biopsychology, neuroscience, and physiology often include laboratory exercises that examine responses to stimulation of the sympathetic nervous system with measurements of heart rate, blood pressure, or galvanic skin levels (sweat response). A newer bioindicator of the sympathetic nervous system is salivary alpha-amylase (sAA) measured with a colorimetic enzyme assay. Undergraduate students successfully measured a rise in sAA due to the stress of giving a class presentation (n=13). Students were enthusiastic to measure a physiological response to a real-life anxiety-producing situation. We describe potential difficulties in the assay and our adaptations to the manufacturer's protocol to make it more feasible in the undergraduate setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...