Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 334(6053): 200-3, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21998381

RESUMO

Quantum phases of matter are characterized by the underlying correlations of the many-body system. Although this is typically captured by a local order parameter, it has been shown that a broad class of many-body systems possesses a hidden nonlocal order. In the case of bosonic Mott insulators, the ground state properties are governed by quantum fluctuations in the form of correlated particle-hole pairs that lead to the emergence of a nonlocal string order in one dimension. By using high-resolution imaging of low-dimensional quantum gases in an optical lattice, we directly detect these pairs with single-site and single-particle sensitivity and observe string order in the one-dimensional case.

2.
Phys Rev Lett ; 106(5): 050405, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21405381

RESUMO

When a nonintegrable system evolves out of equilibrium for a long time, local observables are in general expected to attain stationary expectation values, independent of the details of the initial state. But the thermalization of a closed quantum system is not yet well understood. Here we show that it presents indeed a much richer phenomenology than its classical counterpart. Using a new numerical technique, we identify two distinct regimes, strong and weak, occurring for different initial states. Strong thermalization, intrinsically quantum, happens when instantaneous local expectation values converge to the thermal ones. Weak thermalization, well known in classical systems, shows convergence to thermal values only after time averaging. Remarkably, we find a third group of states showing no thermalization, neither strong nor weak, to the time scales one can reliably simulate.

3.
Phys Rev Lett ; 102(24): 240603, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19658990

RESUMO

We propose a new method for computing the ground state properties and the time evolution of infinite chains based on a transverse contraction of the tensor network. The method does not require finite size extrapolation and avoids explicit truncation of the bond dimension along the evolution. By folding the network in the time direction prior to contraction, time-dependent expectation values and dynamic correlation functions can be computed after much longer evolution time than with any previous method. Moreover, the algorithm we propose can be used for the study of some noninvariant infinite chains, including impurity models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...