Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 256: 119180, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795948

RESUMO

The main focus of anticancer drug discovery is on developing medications that are gentle on normal cells and should have the ability to target multiple anti-cancer pathways. Liver cancer is becoming a worldwide epidemic due to the highest occurring and reoccurring rate in some countries. Calotropis procera is a xerophytic herbal plant growing wildly in Saudi Arabia. Due to its anti-angiogenic and anticancer capabilities, "C. procera" is a viable option for developing innovative anticancer medicines. However, no study has been done previously, to discover angiogenic and anti-cancer targets which are regulated by C. procera in liver cancer. In this study, leaves, stems, flowers, and seeds of C. procera were used to prepare crude extracts and were fractionated into four solvents of diverse polarities. These bioactivity-guided solvent fractions helped to identify useful compounds with minimal side effects. The phytoconstituents present in the leaves and stem were identified by GC-MS. In silico studies were done to predict the anti-cancer targets by major bioactive constituents present in leaves and stem extracts. A human angiogenesis antibody array was performed to profile novel angiogenic targets. The results from this study showed that C. procera extracts are an ideal anti-cancer remedy with minimum toxicity to normal cells as revealed by zebrafish in vivo toxicity screening assays. The novel antiangiogenic and anticancer targets identified in this study could be explored to design medication against liver cancer.


Assuntos
Calotropis , Neoplasias Hepáticas , Extratos Vegetais , Peixe-Zebra , Calotropis/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias Hepáticas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Folhas de Planta/química , Feminino , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Simulação por Computador , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/análise
2.
Biomedicines ; 11(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37189672

RESUMO

A safe and effective treatment for liver cancer is still elusive despite all attempts. Biomolecules produced from natural products and their derivatives are potential sources of new anticancer medications. This study aimed to investigate the anticancer potential of a Streptomyces sp. bacterial extract against diethylnitrosamine (DEN)-induced liver cancer in Swiss albino mice and explore the underlying cellular and molecular mechanisms. The ethyl acetate extract of a Streptomyces sp. was screened for its potential anticancer activities against HepG-2 using the MTT assay, and the IC50 was also determined. Gas chromatography-mass spectrometric analysis was used to identify the chemical constituents of the Streptomyces extract. Mice were administered DEN at the age of 2 weeks, and from week 32 until week 36 (4 weeks), they received two doses of Streptomyces extract (25 and 50 mg/kg body weight) orally daily. The Streptomyces extract contains 29 different compounds, according to the GC-MS analysis. The rate of HepG-2 growth was dramatically reduced by the Streptomyces extract. In the mice model. Streptomyces extract considerably lessened the negative effects of DEN on liver functions at both doses. Alpha-fetoprotein (AFP) levels were significantly (p < 0.001) decreased, and P53 mRNA expression was increased, both of which were signs that Streptomyces extract was suppressing carcinogenesis. This anticancer effect was also supported by histological analysis. Streptomyces extract therapy additionally stopped DEN-induced alterations in hepatic oxidative stress and enhanced antioxidant activity. Additionally, Streptomyces extract reduced DEN-induced inflammation, as shown by the decline in interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) levels. Additionally, the Streptomyces extract administration dramatically boosted Bax and caspase-3 levels while decreasing Bcl-2 expressions in the liver according to the Immunohistochemistry examination. In summary, Streptomyces extract is reported here as a potent chemopreventive agent against hepatocellular carcinoma through multiple mechanisms, including inhibiting oxidative stress, cell apoptosis, and inflammation.

3.
Saudi J Biol Sci ; 30(4): 103611, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36970253

RESUMO

Infectious diseases transmitted by vectors have claimed millions of lives. The mosquito Culex pipiens is a main vector species of Rift Valley Fever virus (RVFV) transmission. RVFV is an arbovirus that infects both people and animals. No effective vaccine or drugs are available for RVFV. Therefore, it is vital to find effective therapies for this viral infection. Because of their critical roles in transmission and infection, acetylcholinesterase 1 (AChE1) of Cx. Pipiens and RVFV glycoproteins, and nucleocapsid proteins are appealing protein targets. To understand intermolecular interactions, computational screening was carried out using molecular docking. More than 50 compounds were tested against different target proteins in the current study. Anabsinthin (-11.1 kcal/mol), zapoterin (-9.4 kcal/mol), porrigenin A (-9.4 kcal/mol), and 3-Acetyl-11-keto-beta-boswellic acid (AKBA) (-9.4 kcal/mol) were the top hit compounds for Cx. Pipiens. Similarly, the top hit compounds for RVFV were zapoterin, porrigenin A, anabsinthin, and yamogenin. The toxicity of Rofficerone is predicted as fatal (Class II), whereas Yamogenin is safe (Class VI). Further investigations are needed to validate the selected promising candidates against Cx. pipiens and RVFV infection using in-vitro and in-vivo methods.

4.
Saudi J Biol Sci ; 29(4): 2719-2726, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531145

RESUMO

The study was planned to investigate DNA fragmentation in fish to screen aquatic toxicity and in Epinephalus chlorostigma and Scamberomorus commerson collected from Red sea near Jizan, Saudi Arabia from three locations "(Corniche North park: "16.92161, 42.54631; Jizan Port: 16.874, 42.54952" N and Jizan Economic City: 17.26589, 42.34738" ")" were used as a case study for the application of comet assay. The study area of the Red Sea is polluted due to anthropogenic activities and the disposal of wastes from multiple sources. Comet and micronucleus assays were used to detect genotoxicity in these fish species harvested from three sites. The concentration of Pb, Cr, Zn, Mn, Cu, Cd, Sn, and Hg was higher in the water samples collected from the polluted site compared to the non-polluted site of the Red sea. Comet assay for S. commerson showed significant (p < 0.05) genetic damage about 44.33 ± 3.03% DNA in comet tail at site S1. It was subsequently reduced to 31.71 ± 3.52% and 22.11 ± 2.52% at sites S2 and S3. E. chlorostigma also showed significant DNA in comet tail as 17.34 ± 2.19%, 11.87 ± 3.01%, and 36.41 ± 3.98% at site S1-S3, respectively. Significant (p < 0.05) DNA damage was observed in the fishes procured from non-polluted locations and upstream locations. The micronucleus induction in E. chlorostigma was recorded as 23.20 ± 4.19 and 2.20 ± 0.58%, respectively, non-polluted and polluted sites. S. commerson exhibited significant differences between polluted and non-polluted sites (44.80 ± 3.73 and 8.20 ± 2.20‰) polluted and upstream (44.80 ± 3.73 and 20.60 ± 4.02‰), respectively. A significant difference was obtained between E. chlorostigma and S. commerson for nuclear abnormalities S. commerson showed higher frequencies for nuclear deformities than E. chlorostigma. S. commerson showed substantial micronucleus induction frequencies collected from an area of low pollution intensity (upstream). This study showed that E. clorostigma and S. commerson could be successfully used as a bioindicator to determine the health of the Red Sea through the most specific assays such as comet and micronucleus tests as an early warning and to devise the monitoring strategies to ensure a safe supply of fish for human consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...