Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991121

RESUMO

BACKGROUND: Organ doses in spiral CT scans depend on the tube start angle. PURPOSE: To determine the effective dose in single source CT (SSCT) and dual source CT (DSCT) scans as a function of tube start angle and spiral pitch value to identify the dose reduction potential by selecting the optimal start angle. METHODS: Using Monte Carlo simulations, dose values for different tube positions with an angular increment of 10 ∘ $10^\circ$ and a longitudinal increment of 4.5 m m $4.5 \,\mathrm{m}\mathrm{m}$ were simulated over a range of 31.5 c m $31.5 \,\mathrm{c}\mathrm{m}$ with collimations of 40 mm $40\, \mathrm{mm}$ , 60 mm $60\, \mathrm{mm}$ , and 80 m m $80 \,\mathrm{m}\mathrm{m}$ . The simulations were performed for the thorax region of six adult patients based on clinical CT data. From the resulting dose distributions, organ doses and effective dose were determined as a function of tube angle and longitudinal position. Using these per-view dose data, the individual organ doses, as well as the total effective dose, were determined for spiral scans with and without tube current modulation (TCM) with pitch values ranging from 0.5 to 1.5 for SSCT and up to 3.0 for DSCT. The dose of the best and worst tube start angle in terms of dose was determined and compared to the mean dose over all tube start angles. RESULTS: With increasing pitch and collimation, the dose variations from the effective dose averaged over all start angles increase. While for a collimation of 40 m m $40 \,\mathrm{m}\mathrm{m}$ , the variations from the mean dose value stay below 5 % $5 \%$ for SSCT, we find that for a spiral scan with a pitch of 3.0 for DSCT with TCM and collimation of 80 m m $80 \,\mathrm{m}\mathrm{m}$ , the dose for the best starting angle is on average 16 % $16 \%$ lower than the mean value and 28 % $28 \%$ lower than the maximum value. CONCLUSIONS: Variation of the tube start angle in spiral scans exhibits substantial differences in radiation dose especially for high pitch values and for high collimations. Therefore, we suggest to control the tube start angle to minimize patient risk.

2.
Sci Rep ; 14(1): 9373, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653993

RESUMO

To facilitate a prospective estimation of the effective dose of an CT scan prior to the actual scanning in order to use sophisticated patient risk minimizing methods, a prospective spatial dose estimation and the known anatomical structures are required. To this end, a CT reconstruction method is required to reconstruct CT volumes from as few projections as possible, i.e. by using the topograms, with anatomical structures as correct as possible. In this work, an optimized CT reconstruction model based on a generative adversarial network (GAN) is proposed. The GAN is trained to reconstruct 3D volumes from an anterior-posterior and a lateral CT projection. To enhance anatomical structures, a pre-trained organ segmentation network and the 3D perceptual loss are applied during the training phase, so that the model can then generate both organ-enhanced CT volume and organ segmentation masks. The proposed method can reconstruct CT volumes with PSNR of 26.49, RMSE of 196.17, and SSIM of 0.64, compared to 26.21, 201.55 and 0.63 using the baseline method. In terms of the anatomical structure, the proposed method effectively enhances the organ shapes and boundaries and allows for a straight-forward identification of the relevant anatomical structures. We note that conventional reconstruction metrics fail to indicate the enhancement of anatomical structures. In addition to such metrics, the evaluation is expanded with assessing the organ segmentation performance. The average organ dice of the proposed method is 0.71 compared with 0.63 for the baseline model, indicating the enhancement of anatomical structures.


Assuntos
Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Doses de Radiação , Imagens de Fantasmas , Algoritmos , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...