Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(3): 033401, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37540887

RESUMO

We report on the experimental realization of a Kapitza trap for ultracold atoms. Using time-periodic attractive and repulsive Gaussian potentials, we create an effective trap for ultracold neutral atoms in a regime where the time average of the potential is equal to zero. We analyze the role of experimental imperfections, the stability of the trapped atomic cloud, and the magnitude of the effective potential. We find good agreement with the high-frequency expansion of the underlying system dynamics. Our experimental approach opens up new possibilities to study Floquet systems of neutral atoms.

2.
Sci Adv ; 4(8): eaat6539, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30105306

RESUMO

Coherent perfect absorption is the complete extinction of incoming radiation by a complex potential in a physical system supporting wave propagation. The concept was proven for linear waves in a variety of systems including light interacting with absorbing scatterers, plasmonic metasurfaces, and graphene films, as well as sound waves. We extend the paradigm to coherent perfect absorption of nonlinear waves and experimentally demonstrate it for matter waves in an atomic Bose-Einstein condensate. Coherent absorption of nonlinear matter waves is achieved easier than its linear analogs because the strength of two-body interactions offers additional freedom for control. Implementation of the coherent perfect absorber of Bose-Einstein condensates paves the way toward broad exploitation of the phenomenon in nonlinear optics, exciton-polariton condensates, acoustics, and other areas of nonlinear physics. It also opens perspectives for designing atom lasers.

3.
Nat Commun ; 8: 15601, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28580941

RESUMO

One of the important goals of present research is to control and manipulate coherence in a broad variety of systems, such as semiconductor spintronics, biological photosynthetic systems, superconducting qubits and complex atomic networks. Over the past decades, interferometry of atoms and molecules has proven to be a powerful tool to explore coherence. Here we demonstrate a near-field interferometer based on the Talbot effect, which allows us to measure finite-range phase coherence of ultracold atoms in an optical lattice. We apply this interferometer to study the build-up of phase coherence after a quantum quench of a Bose-Einstein condensate residing in a one-dimensional optical lattice. Our technique of measuring finite-range phase coherence is generic, easy to adopt and can be applied in practically all lattice experiments without further modifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...