Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(4)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175705

RESUMO

Mutations in the N-terminal WD40 domain of coatomer protein complex subunit α (COPA) cause a type I interferonopathy, typically characterized by alveolar hemorrhage, arthritis, and nephritis. We described 3 heterozygous mutations in the C-terminal domain (CTD) of COPA (p.C1013S, p.R1058C, and p.R1142X) in 6 children from 3 unrelated families with a similar syndrome of autoinflammation and autoimmunity. We showed that these CTD COPA mutations disrupt the integrity and the function of coat protein complex I (COPI). In COPAR1142X and COPAR1058C fibroblasts, we demonstrated that COPI dysfunction causes both an anterograde ER-to-Golgi and a retrograde Golgi-to-ER trafficking defect. The disturbed intracellular trafficking resulted in a cGAS/STING-dependent upregulation of the type I IFN signaling in patients and patient-derived cell lines, albeit through a distinct molecular mechanism in comparison with mutations in the WD40 domain of COPA. We showed that CTD COPA mutations induce an activation of ER stress and NF-κB signaling in patient-derived primary cell lines. These results demonstrate the importance of the integrity of the CTD of COPA for COPI function and homeostatic intracellular trafficking, essential to ER homeostasis. CTD COPA mutations result in disease by increased ER stress, disturbed intracellular transport, and increased proinflammatory signaling.


Assuntos
Complexo I de Proteína do Envoltório , Proteína Coatomer , Criança , Humanos , Proteína Coatomer/genética , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Mutação , Síndrome , Complexo de Golgi/genética , Complexo de Golgi/metabolismo
2.
Eur Heart J Open ; 4(1): oead129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38174347

RESUMO

Aims: Microvascular dysfunction has been proposed to drive heart failure with preserved ejection fraction (HFpEF), but the initiating molecular and cellular events are largely unknown. Our objective was to determine when microvascular alterations in HFpEF begin, how they contribute to disease progression, and how pericyte dysfunction plays a role herein. Methods and results: Microvascular dysfunction, characterized by inflammatory activation, loss of junctional barrier function, and altered pericyte-endothelial crosstalk, was assessed with respect to the development of cardiac dysfunction, in the Zucker fatty and spontaneously hypertensive (ZSF1) obese rat model of HFpEF at three time points: 6, 14, and 21 weeks of age. Pericyte loss was the earliest and strongest microvascular change, occurring before prominent echocardiographic signs of diastolic dysfunction were present. Pericytes were shown to be less proliferative and had a disrupted morphology at 14 weeks in the obese ZSF1 animals, who also exhibited an increased capillary luminal diameter and disrupted endothelial junctions. Microvascular dysfunction was also studied in a mouse model of chronic reduction in capillary pericyte coverage (PDGF-Bret/ret), which spontaneously developed many aspects of diastolic dysfunction. Pericytes exposed to oxidative stress in vitro showed downregulation of cell cycle-associated pathways and induced a pro-inflammatory state in endothelial cells upon co-culture. Conclusion: We propose pericytes are important for maintaining endothelial cell function, where loss of pericytes enhances the reactivity of endothelial cells to inflammatory signals and promotes microvascular dysfunction, thereby accelerating the development of HFpEF.

3.
Transl Psychiatry ; 14(1): 29, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233378

RESUMO

The neuropeptide corticotropin-releasing factor (CRF) exerts a pivotal role in modulating neuronal activity in the mammalian brain. The effects of CRF exhibit notable variations, depending on factors such as duration of exposure, concentration, and anatomical location. In the CA1 region of the hippocampus, the impact of CRF is dichotomous: chronic exposure to CRF impairs synapse formation and dendritic integrity, whereas brief exposure enhances synapse formation and plasticity. In the current study, we demonstrate long-term effects of acute CRF on the density and stability of mature mushroom spines ex vivo. We establish that both CRF receptors are present in this hippocampal region, and we pinpoint their precise subcellular localization within synapses by electron microscopy. Furthermore, both in vivo and ex vivo data collectively demonstrate that a transient surge of CRF in the CA1 activates the cyclin-dependent kinase 5 (Cdk5)-pathway. This activation leads to a notable augmentation in CRF-dependent spine formation. Overall, these data suggest that upon acute release of CRF in the CA1-SR synapse, both CRF-Rs can be activated and promote synaptic plasticity via activating different downstream signaling pathways, such as the Cdk5-pathway.


Assuntos
Hormônio Liberador da Corticotropina , Espinhas Dendríticas , Animais , Hormônio Liberador da Corticotropina/metabolismo , Espinhas Dendríticas/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/farmacologia , Hipocampo/metabolismo , Receptores de Hormônio Liberador da Corticotropina , Sinapses/metabolismo , Mamíferos/metabolismo
5.
Sci Rep ; 13(1): 4662, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949216

RESUMO

Small diameter vascular grafts (SDVGs) are associated with a high failure rate due to poor endothelialization. The incorporation of a nitric oxide (NO) releasing system improves biocompatibility by using the NO effect to promote endothelial cell (EC) migration and proliferation while preventing bacterial infection. To circumvent the instability of NO donors and to prolong NO releasing, S-nitroso-N-acetyl-D-penicillamine (SNAP) as a NO donor was loaded in multi-walled carbon nanotubes (MWCNTs). Successful loading was confirmed with a maximum SNAP amount of ~ 5% (w/w) by TEM, CHNS analysis and FTIR spectra. SDVGs were 3D printed from polycaprolactone (PCL) and coated with a 1:1 ratio of polyethylene glycol and PCL dopped with different concentrations of SNAP-loaded matrix and combinations of MWCNTs-OH. Coating with 10% (w/w) SNAP-matrix-10% (w/w) SNAP-MWCNT-OH showed a diminished burst release and 18 days of NO release in the range of 0.5-4 × 10-10 mol cm-2 min-1 similar to the NO release from healthy endothelium. NO-releasing SDVGs were cytocompatible, significantly enhanced EC proliferation and migration and diminished bacterial viability. The newly developed SNAP-loaded MWCNT-OH has a great potential to develop NO releasing biomaterials with a prolonged, controlled NO release promoting in-situ endothelialization and tissue integration in vivo, even as an approach towards personalized medicine.


Assuntos
Nanotubos de Carbono , Óxido Nítrico , Óxido Nítrico/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Preparações de Ação Retardada , Doadores de Óxido Nítrico/farmacologia , Impressão Tridimensional
6.
Mol Neurodegener ; 18(1): 5, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653804

RESUMO

BACKGROUND: Astrocytes play a crucial, yet not fully elucidated role in the selective motor neuron pathology in amyotrophic lateral sclerosis (ALS). Among other responsibilities, astrocytes provide important neuronal homeostatic support, however this function is highly compromised in ALS. The establishment of fully human coculture systems can be used to further study the underlying mechanisms of the dysfunctional intercellular interplay, and has the potential to provide a platform for revealing novel therapeutic entry points. METHODS: In this study, we characterised human induced pluripotent stem cell (hiPSC)-derived astrocytes from FUS-ALS patients, and incorporated these cells into a human motor unit microfluidics model to investigate the astrocytic effect on hiPSC-derived motor neuron network and functional neuromuscular junctions (NMJs) using immunocytochemistry and live-cell recordings. FUS-ALS cocultures were systematically compared to their CRISPR-Cas9 gene-edited isogenic control systems. RESULTS: We observed a dysregulation of astrocyte homeostasis, which resulted in a FUS-ALS-mediated increase in reactivity and secretion of inflammatory cytokines. Upon coculture with motor neurons and myotubes, we detected a cytotoxic effect on motor neuron-neurite outgrowth, NMJ formation and functionality, which was improved or fully rescued by isogenic control astrocytes. We demonstrate that ALS astrocytes have both a gain-of-toxicity and loss-of-support function involving the WNT/ß-catenin pathway, ultimately contributing to the disruption of motor neuron homeostasis, intercellular networks and NMJs. CONCLUSIONS: Our findings shine light on a complex, yet highly important role of astrocytes in ALS, and provides further insight in to their pathological mechanisms.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular , Proteína FUS de Ligação a RNA/fisiologia
7.
Arterioscler Thromb Vasc Biol ; 43(2): 267-285, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36453281

RESUMO

BACKGROUND: Infective endocarditis (IE) is characterized by an infected thrombus at the heart valves. How bacteria bypass the immune system and cause these thrombi remains unclear. Neutrophils releasing NETs (neutrophil extracellular traps) lie at this interface between host defense and coagulation. We aimed to determine the role of NETs in IE immunothrombosis. METHODS: We used a murine model of Staphylococcus aureus endocarditis in which IE is provoked on inflamed heart valves and characterized IE thrombus content by immunostaining identifying NETs. Antibody-mediated neutrophil depletion and neutrophil-selective PAD4 (peptidylarginine deiminase 4)-knockout mice were used to clarify the role of neutrophils and NETs, respectively. S. aureus mutants deficient in key virulence factors related to immunothrombosis (nucleases or staphylocoagulases) were investigated. RESULTS: Neutrophils releasing NETs were present in infected thrombi and within cellular infiltrates in the surrounding vasculature. Neutrophil depletion increased occurrence of IE, whereas neutrophil-selective impairment of NET formation did not alter IE occurrence. Absence of S. aureus nuclease, which degrades NETs, did not affect endocarditis outcome. In contrast, absence of staphylocoagulases (coagulase and von Willebrand factor binding protein) led to improved survival, decreased bacteremia, smaller infiltrates, and decreased tissue destruction. Significantly more NETs were present in these vegetations, which correlated with decreased bacteria and cell death in the adjacent vascular wall. CONCLUSIONS: Neutrophils protect against IE independent of NET release. Absence of S. aureus coagulases, but not nucleases, reduced IE severity and increased NET levels. Staphylocoagulase-induced fibrin likely hampers NETs from constraining infection and the resultant tissue damage, a hallmark of valve destruction in IE.


Assuntos
Endocardite Bacteriana , Endocardite , Armadilhas Extracelulares , Infecções Estafilocócicas , Camundongos , Animais , Neutrófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Staphylococcus aureus , Tromboinflamação , Endocardite Bacteriana/prevenção & controle , Endocardite Bacteriana/metabolismo , Endocardite/metabolismo
10.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232721

RESUMO

During vascular development, endothelial cAMP-dependent protein kinase A (PKA) regulates angiogenesis by controlling the number of tip cells, and PKA inhibition leads to excessive angiogenesis. Whether this role of endothelial PKA is restricted to embryonic and neonatal development or is also required for vascular homeostasis later on is unknown. Here, we show that perinatal (postnatal days P1-P3) of later (P28-P32) inhibition of endothelial PKA using dominant-negative PKA expressed under the control of endothelial-specific Cdh5-CreERT2 recombinase (dnPKAiEC mice) leads to severe subcutaneous edema, hypoalbuminemia, hypoglycemia and premature death. These changes were accompanied by the local hypersprouting of blood vessels in fat pads and the secondary enlargement of subcutaneous lymphatic vessels. Most noticeably, endothelial PKA inhibition caused a dramatic disorganization of the liver vasculature. Hepatic changes correlated with decreased gluconeogenesis, while liver albumin production seems to be unaffected and hypoalbuminemia is rather a result of increased leakage into the interstitium. Interestingly, the expression of dnPKA only in lymphatics using Prox1-CreERT2 produced no phenotype. Likewise, the mosaic expression in only endothelial subpopulations using Vegfr3-CreERT2 was insufficient to induce edema or hypoglycemia. Increased expression of the tip cell marker ESM1 indicated that the inhibition of PKA induced an angiogenic response in the liver, although tissue derived pro- and anti-angiogenic factors were unchanged. These data indicate that endothelial PKA is a gatekeeper of endothelial cell activation not only in development but also in adult homeostasis, preventing the aberrant reactivation of the angiogenic program.


Assuntos
Vasos Sanguíneos , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico , Células Endoteliais , Fígado , Albuminas , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiologia , AMP Cíclico , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Homeostase , Hipoalbuminemia , Hipoglicemia , Fígado/metabolismo , Fígado/fisiologia , Camundongos , Recombinases
11.
Commun Biol ; 5(1): 871, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008485

RESUMO

Pseudomonas aeruginosa is intrinsically resistant to many antibiotics due to the impermeability of its outer membrane and to the constitutive expression of efflux pumps. Here, we show that the polyaminoisoprenyl compound NV716 at sub-MIC concentrations re-sensitizes P. aeruginosa to abandoned antibiotics by binding to the lipopolysaccharides (LPS) of the outer membrane, permeabilizing this membrane and increasing antibiotic accumulation inside the bacteria. It also prevents selection of resistance to antibiotics and increases their activity against biofilms. No stable resistance could be selected to NV716-itself after serial passages with subinhibitory concentrations, but the transcriptome of the resulting daughter cells shows an upregulation of genes involved in the synthesis of lipid A and LPS, and a downregulation of quorum sensing-related genes. Accordingly, NV716 also reduces motility, virulence factors production, and biofilm formation. NV716 shows a unique and highly promising profile of activity when used alone or in combination with antibiotics against P. aeruginosa, combining in a single molecule anti-virulence and potentiator effects. Additional work is required to more thoroughly understand the various functions of NV716.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Biofilmes , Lipopolissacarídeos/farmacologia , Percepção de Quorum/genética
12.
J Nanobiotechnology ; 20(1): 333, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842697

RESUMO

Red blood cell (RBC) hitchhiking has great potential in enhancing drug therapy, by improving targeting and reducing rapid clearance of nanoparticles (NPs). However, to improve the potential for clinical translation of RBC hitchhiking, a more thorough understanding of the RBC-NP interface is needed. Here, we evaluate the effects of NP surface parameters on the success and biocompatibility of NP adsorption to extracted RBCs from various species. Major differences in RBC characteristics between rabbit, mouse and human were proven to significantly impact NP adsorption outcomes. Additionally, the effects of NP design parameters, including NP hydrophobicity, zeta potential, surfactant concentration and drug encapsulation, on RBC hitchhiking are investigated. Our studies demonstrate the importance of electrostatic interactions in balancing NP adsorption success and biocompatibility. We further investigated the effect of varying the anti-coagulant used for blood storage. The results presented here offer new insights into the parameters that impact NP adsorption on RBCs that will assist researchers in experimental design choices for using RBC hitchhiking as drug delivery strategy.


Assuntos
Nanopartículas , Adsorção , Animais , Sistemas de Liberação de Medicamentos/métodos , Eritrócitos , Humanos , Camundongos , Nanopartículas/uso terapêutico , Polímeros/farmacologia , Coelhos
13.
Mol Pharm ; 19(8): 2712-2724, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35476407

RESUMO

In the present work, an insoluble polymer, i.e., ethyl cellulose (EC), was combined with the water-soluble polyvinylpyrrolidone (PVP) as a carrier system for the formulation of amorphous solid dispersions. The rationale was that by conjoining these two different types of carriers a more gradual drug release could be created with less risk for precipitation. Our initial hypothesis was that upon contact with the dissolution medium, PVP would be released, creating a porous EC matrix through which the model drug indomethacin could diffuse. On the basis of observations of EC as a coating material, the effect of the molecular weight of PVP, and the ratio of EC/PVP on the miscibility of the polymer blend, the solid state of the solid dispersion and the drug release from these solid dispersions were investigated. X-ray powder diffraction, modulated differential scanning calorimetry, and solid-state nuclear magnetic resonance were used to unravel the miscibility and solid-state properties of these blends and solid dispersions. Solid-state nuclear magnetic resonance appeared to be a crucial technique for this aspect as modulated differential scanning calorimetry was not sufficient to grasp the complex phase behavior of these systems. Both EC/PVP K12 and EC/PVP K25 blends were miscible over the entire composition range, and addition of indomethacin did not alter this. Concerning the drug release, it was initially thought that more PVP would lead to faster drug release with a higher probability that all of the drug molecules would be able to diffuse out of the EC network as more pores would be created. However, this view on the release mechanism appeared to be too simplistic as an optimum was observed for both blends. On the basis of this work, it could be concluded that drug release from this complex ternary system was affected not only by the ratio of EC/PVP and the molecular weight of PVP but also by interactions between the three components, the wettability of the formulations, and the viscosity layer that was created around the particles.


Assuntos
Excipientes , Povidona , Varredura Diferencial de Calorimetria , Celulose/análogos & derivados , Indometacina/química , Polímeros/química , Porosidade , Povidona/química , Solubilidade , Difração de Raios X
14.
J Virol ; 96(6): e0006022, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107376

RESUMO

The impact of the host microbiota on arbovirus infections is currently not well understood. Arboviruses are viruses transmitted through the bites of infected arthropods, predominantly mosquitoes or ticks. The first site of arbovirus inoculation is the biting site in the host skin, which is colonized by a complex microbial community that could possibly influence arbovirus infection. We demonstrated that preincubation of arboviruses with certain components of the bacterial cell wall, including lipopolysaccharides (LPS) of some Gram-negative bacteria and lipoteichoic acids or peptidoglycan of certain Gram-positive bacteria, significantly reduced arbovirus infectivity in vitro. This inhibitory effect was observed for arboviruses of different virus families, including chikungunya virus of the Alphavirus genus and Zika virus of the Flavivirus genus, showing that this is a broad phenomenon. A modest inhibitory effect was observed following incubation with a panel of heat-inactivated bacteria, including bacteria residing on the skin. No viral inhibition was observed after preincubation of cells with LPS. Furthermore, a virucidal effect of LPS on viral particles was noticed by electron microscopy. Therefore, the main inhibitory mechanism seems to be due to a direct effect on the virus particles. Together, these results suggest that bacteria are able to decrease the infectivity of alphaviruses and flaviviruses. IMPORTANCE During the past decades, the world has experienced a vast increase in epidemics of alphavirus and flavivirus infections. These viruses can cause severe diseases, such as hemorrhagic fever, encephalitis, and arthritis. Several alpha- and flaviviruses, such as chikungunya virus, Zika virus, and dengue virus, are significant global health threats because of their high disease burden, their widespread (re-)emergence, and the lack of (good) anti-arboviral strategies. Despite the clear health burden, alphavirus and flavivirus infection and disease are not fully understood. A knowledge gap in the interplay between the host and the arbovirus is the potential interaction with host skin bacteria. Therefore, we studied the effect of (skin) bacteria and bacterial cell wall components on alphavirus and flavivirus infectivity in cell culture. Our results show that certain bacterial cell wall components markedly reduced viral infectivity by interacting directly with the virus particle.


Assuntos
Alphavirus , Arbovírus , Parede Celular , Flavivirus , Alphavirus/patogenicidade , Alphavirus/fisiologia , Animais , Arbovírus/patogenicidade , Arbovírus/fisiologia , Bactérias , Vírus Chikungunya , Flavivirus/patogenicidade , Flavivirus/fisiologia , Lipopolissacarídeos , Microbiota , Zika virus
15.
J Vis Exp ; (175)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34570099

RESUMO

Neuromuscular junctions (NMJs) are specialized synapses between the axon of the lower motor neuron and the muscle facilitating the engagement of muscle contraction. In motor neuron disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), NMJs degenerate, resulting in muscle atrophy and progressive paralysis. The underlying mechanism of NMJ degeneration is unknown, largely due to the lack of translatable research models. This study aimed to create a versatile and reproducible in vitro model of a human motor unit with functional NMJs. Therefore, human induced pluripotent stem cell (hiPSC)-derived motor neurons and human primary mesoangioblast (MAB)-derived myotubes were co-cultured in commercially available microfluidic devices. The use of fluidically isolated micro-compartments allows for the maintenance of cell-specific microenvironments while permitting cell-to-cell contact through microgrooves. By applying a chemotactic and volumetric gradient, the growth of motor neuron-neurites through the microgrooves promoting myotube interaction and the formation of NMJs were stimulated. These NMJs were identified immunocytochemically through co-localization of motor neuron presynaptic marker synaptophysin (SYP) and postsynaptic acetylcholine receptor (AChR) marker α-bungarotoxin (Btx) on myotubes and characterized morphologically using scanning electron microscopy (SEM). The functionality of the NMJs was confirmed by measuring calcium responses in myotubes upon depolarization of the motor neurons. The motor unit generated using standard microfluidic devices and stem cell technology can aid future research focusing on NMJs in health and disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Dispositivos Lab-On-A-Chip , Humanos , Neurônios Motores , Músculo Esquelético , Junção Neuromuscular
16.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502306

RESUMO

Cystinosis is a rare, incurable, autosomal recessive disease caused by mutations in the CTNS gene. This gene encodes the lysosomal cystine transporter cystinosin, leading to lysosomal cystine accumulation in all cells of the body, with kidneys being the first affected organs. The current treatment with cysteamine decreases cystine accumulation, but does not reverse the proximal tubular dysfunction, glomerular injury or loss of renal function. In our previous study, we have developed a zebrafish model of cystinosis through a nonsense mutation in the CTNS gene and have shown that zebrafish larvae recapitulate the kidney phenotype described in humans. In the current study, we characterized the adult cystinosis zebrafish model and evaluated the long-term effects of the disease on kidney and extra renal organs through biochemical, histological, fertility and locomotor activity studies. We found that the adult cystinosis zebrafish presents cystine accumulation in various organs, altered kidney morphology, impaired skin pigmentation, decreased fertility, altered locomotor activity and ocular anomalies. Overall, our data indicate that the adult cystinosis zebrafish model reproduces several human phenotypes of cystinosis and may be useful for studying pathophysiology and long-term effects of novel therapies.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cistina/metabolismo , Cistinose/patologia , Modelos Animais de Doenças , Rim/patologia , Mutação , Proteínas de Peixe-Zebra/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Cistinose/etiologia , Humanos , Rim/metabolismo , Fenótipo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
17.
Cell Rep ; 36(8): 109618, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433017

RESUMO

Hematopoietic stem and progenitor cell (HSPC) engraftment after transplantation during anticancer treatment depends on support from the recipient bone marrow (BM) microenvironment. Here, by studying physiological homing of fetal HSPCs, we show the critical requirement of balanced local crosstalk within the skeletal niche for successful HSPC settlement in BM. Transgene-induced overproduction of vascular endothelial growth factor (VEGF) by osteoprogenitor cells elicits stromal and endothelial hyperactivation, profoundly impacting the stromal-vessel interface and vascular architecture. Concomitantly, HSPC homing and survival are drastically impaired. Transcriptome profiling, flow cytometry, and high-resolution imaging indicate alterations in perivascular and endothelial cell characteristics, vascular function and cellular metabolism, associated with increased oxidative stress within the VEGF-enriched BM environment. Thus, developmental HSPC homing to bone is controlled by local stromal-vascular integrity and the oxidative-metabolic status of the recipient milieu. Interestingly, irradiation of adult mice also induces stromal VEGF expression and similar osteo-angiogenic niche changes, underscoring that our findings may contribute targets for improving stem cell therapies.


Assuntos
Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células da Medula Óssea/citologia , Movimento Celular/fisiologia , Células Cultivadas , Camundongos , Nicho de Células-Tronco/fisiologia , Transplante de Células-Tronco/métodos
18.
Cell ; 184(16): 4284-4298.e27, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34233164

RESUMO

Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Germinação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Príons/metabolismo , Sementes/crescimento & desenvolvimento , Água/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestrutura , Desidratação , Imageamento Tridimensional , Peptídeos e Proteínas de Sinalização Intercelular/química , Mutação/genética , Dormência de Plantas , Plantas Geneticamente Modificadas , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Sementes/ultraestrutura
19.
Transl Psychiatry ; 11(1): 378, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234103

RESUMO

Biological responses to stress are complex and highly conserved. Corticotropin-releasing factor (CRF) plays a central role in regulating these lifesaving physiological responses to stress. We show that, in mice, CRF rapidly changes Schaffer Collateral (SC) input into hippocampal CA1 pyramidal cells (PC) by modulating both functional and structural aspects of these synapses. Host exposure to acute stress, in vivo CRF injection, and ex vivo CRF application all result in fast de novo formation and remodeling of existing dendritic spines. Functionally, CRF leads to a rapid increase in synaptic strength of SC input into CA1 neurons, e.g., increase in spontaneous neurotransmitter release, paired-pulse facilitation, and repetitive excitability and improves synaptic plasticity: long-term potentiation (LTP) and long-term depression (LTD). In line with the changes in synaptic function, CRF increases the number of presynaptic vesicles, induces redistribution of vesicles towards the active zone, increases active zone size, and improves the alignment of the pre- and postsynaptic compartments. Therefore, CRF rapidly enhances synaptic communication in the hippocampus, potentially playing a crucial role in the enhanced memory consolidation in acute stress.


Assuntos
Hormônio Liberador da Corticotropina , Células Piramidais , Animais , Hipocampo , Potenciação de Longa Duração , Camundongos , Sinapses , Transmissão Sináptica
20.
BMC Biol ; 19(1): 152, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330271

RESUMO

BACKGROUND: Array tomography (AT) is a high-resolution imaging method to resolve fine details at the organelle level and has the advantage that it can provide 3D volumes to show the tissue context. AT can be carried out in a correlative way, combing light and electron microscopy (LM, EM) techniques. However, the correlation between modalities can be a challenge and delineating specific regions of interest in consecutive sections can be time-consuming. Integrated light and electron microscopes (iLEMs) offer the possibility to provide well-correlated images and may pose an ideal solution for correlative AT. Here, we report a workflow to automate navigation between regions of interest. RESULTS: We use a targeted approach that allows imaging specific tissue features, like organelles, cell processes, and nuclei at different scales to enable fast, directly correlated in situ AT using an integrated light and electron microscope (iLEM-AT). Our workflow is based on the detection of section boundaries on an initial transmitted light acquisition that serves as a reference space to compensate for changes in shape between sections, and we apply a stepwise refinement of localizations as the magnification increases from LM to EM. With minimal user interaction, this enables autonomous and speedy acquisition of regions containing cells and cellular organelles of interest correlated across different magnifications for LM and EM modalities, providing a more efficient way to obtain 3D images. We provide a proof of concept of our approach and the developed software tools using both Golgi neuronal impregnation staining and fluorescently labeled protein condensates in cells. CONCLUSIONS: Our method facilitates tracing and reconstructing cellular structures over multiple sections, is targeted at high resolution ILEMs, and can be integrated into existing devices, both commercial and custom-built systems.


Assuntos
Imageamento Tridimensional , Tomografia , Coloração e Rotulagem , Tomografia Computadorizada por Raios X , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...