Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 12(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059457

RESUMO

Adolescent cancer survivors present increased risks of developing secondary malignancies due to cancer therapy. Electrochemotherapy is a promising anti-cancer approach that potentiates the cytotoxic effect of drugs by application of external electric field pulses. Clinicians proposed to associate electroporation and calcium. The current study aims to unravel the toxic mechanisms of calcium electroporation, in particular if calcium presents a genotoxic profile and if its cytotoxicity comes from the ion itself or from osmotic stress. Human dermal fibroblasts and colorectal HCT-116 cell line were treated by electrochemotherapy using bleomycin, cisplatin, calcium, or magnesium. Genotoxicity, cytotoxicity, mitochondrial membrane potential, ATP content, and caspases activities were assessed in cells grown on monolayers and tumor growth was assayed in tumor spheroids. Results in monolayers show that unlike cisplatin and bleomycin, calcium electroporation induces cell death without genotoxicity induction. Its cytotoxicity correlates with a dramatic fall in mitochondrial membrane potential and ATP depletion. Opposite of magnesium, over seven days of calcium electroporation led to spheroid tumor growth regression. As non-genotoxic, calcium has a better safety profile than conventional anticancer drugs. Calcium is already authorized by different health authorities worldwide. Therefore, calcium electroporation should be a cancer treatment of choice due to the reduced potential of secondary malignancies.

2.
Nanoscale ; 10(35): 16775-16786, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30156241

RESUMO

Despite a clear development of innovative therapies based on stem cell manipulation, the availability of new tools to better understand and follow stem cell behavior and improve their biomedical applications is not adequate. Indeed, an ideal tracking device must have good ability to label stem cells as well as complete neutrality relative to their biology. Furthermore, preclinical studies imply in vitro and in vivo approaches that often require several kinds of labeling and/or detection procedures. Consequently, the multimodality concept presented in this work may present a solution to this problem as it has the potential to combine complementary imaging techniques. Spherical europium-doped gadolinium oxysulfide (Gd2O2S:Eu3+) nanoparticles are presented as a candidate as they are detectable by (1) magnetic resonance (MRI), (2) X-ray and (3) photoluminescence imaging. Whole body in vivo distribution, elimination and toxicity evaluation revealed a high tolerance of nanoparticles with a long-lasting MRI signal and slow hepatobiliary and renal clearance. In vitro labeling of a wide variety of cells unveils the nanoparticle potential for efficient and universal cell tracking. Emphasis on mesenchymal stromal cells (MSCs) leads to the definition of optimal conditions for labeling and tracking in the context of cell therapy: concentrations below 50 µg mL-1 and diameters between 170 and 300 nm. Viability, proliferation, migration and differentiation towards mesodermal lineages are preserved under these conditions, and cell labeling appears to be persistent and without any leakage. Ex vivo detection of as few as five thousand Gd2O2S:Eu3+-labeled MSCs by MRI combined with in vitro examination with fluorescence microscopy highlights the feasibility of cell tracking in cell therapy using this new nanoplatform.


Assuntos
Rastreamento de Células , Meios de Contraste/química , Gadolínio/química , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Animais , Células CHO , Diferenciação Celular , Cricetulus , Feminino , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Coelhos , Ratos , Ratos Endogâmicos Lew
3.
Sci Rep ; 6: 19778, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26830154

RESUMO

The integrity and morphology of bacteria is sustained by the cell wall, the target of the main microbial inactivation processes. One promising approach to inactivation is based on the use of pulsed electric fields (PEF). The current dogma is that irreversible cell membrane electro-permeabilisation causes the death of the bacteria. However, the actual effect on the cell-wall architecture has been poorly explored. Here we combine atomic force microscopy and electron microscopy to study the cell-wall organization of living Bacillus pumilus bacteria at the nanoscale. For vegetative bacteria, exposure to PEF led to structural disorganization correlated with morphological and mechanical alterations of the cell wall. For spores, PEF exposure led to the partial destruction of coat protein nanostructures, associated with internal alterations of cortex and core. Our findings reveal for the first time that the cell wall and coat architecture are directly involved in the electro-eradication of bacteria.


Assuntos
Bacillus pumilus/metabolismo , Parede Celular/metabolismo , Desinfecção/métodos , Eletricidade , Viabilidade Microbiana , Bacillus pumilus/ultraestrutura , Parede Celular/ultraestrutura
4.
J RNAi Gene Silencing ; 9: 479-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23946765

RESUMO

Low biological activity and inefficient targeted delivery in vivo have hindered RNA interference (RNAi)-based therapy from realising its full clinical potential. To overcome these hurdles, progresses have been made to develop new technologies optimizing oligonucleotides chemistry on one hand and achieving its effective delivery on the other hand. In this report, we achieved, by using the electropulsation technique (EP), efficient cellular delivery of chemically-modified oligonucleotide: The locked nucleic acid (LNA)/DNA oligomer. We used single cell level confocal fluorescence microscopy to follow the spatial and temporal distribution of electrotransferred cyanine 5 (Cy5)-labeled LNA/DNA oligomer. We observed that EP allowed LNA/DNA oligomer cellular uptake providing the oligomer a rapid access to the cytoplasm of HeLa cells. Within a few minutes after electrotransfer, Cy5-LNA/DNA oligomers shuttle from cytoplasm to nucleus whereas in absence of pulses application, Cy5-LNA/DNA oligomers were not detected. We then observed a redistribution of the Cy5 fluorescence that accumulated over time into cytoplasmic organelles. To go further and to identify these compartments, we used the HeLa GFP-Rab7 cell line to visualise late endosomes, and lysosomal or mitochondrial specific markers. Our results showed that the EP technique allowed direct entry into the cytoplasm of the Cy5-LNA/DNA oligomer bypassing the endocytosic pathway. However, in absence of pulses application, Cy5-LNA/DNA oligomer were able to enter cells through the endocytosic pathway. We demonstrated that EP is an efficient technique for LNA-based oligonucleotides delivery offering strong advantages by avoiding the endolysosomal compartmentalization, giving a rapid and free access to the cytoplasm and the nucleus where they can find their targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...