Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38485679

RESUMO

The urgent need for novel antibiotics in the face of escalating global antimicrobial resistance necessitates innovative approaches to identify bioactive compounds. Actinomycetes, renowned for their prolific production of antimicrobial agents, stand as a cornerstone in this pursuit. Their diverse metabolites exhibit multifaceted bioactivities, including potent antituberculosis, anticancer, immunomodulatory, immuno-protective, antidiabetic, etc. Though terrestrial sources have been exploited significantly, contemporary developments in the field of antimicrobial drug discovery have put marine actinomycetes in a prominent light as a promising and relatively unexplored source of novel bioactive molecules. This is further boosted by post-genomic era advances like bioinformatics-based secretome analysis and reverse engineering that have totally revitalized actinomycetes antibiotic research. This review highlights actinomycetes-based chemically diverse scaffolds and clinically validated antibiotics along with the enduring significance of actinomycetes from untouched ecosystems, especially with recent advanced techniques in the quest for next-generation antimicrobials.

2.
Curr Top Med Chem ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38288803

RESUMO

During and after the COVID-19 pandemic,Tuberculosis (TB) has reestablished with higher figures due to interruptions in the Directly Observed Treatment Short course (DOTS) despite underreporting. The rising consequences would have extended to extra-pulmonary forms of TB as well, including Tuberculous Meningitis (TBM). Considering the fact that TBM is the most dangerous and worst form of TB, we found the need to scan the literature to highlight various aspects of TBM. Epidemiology of TBM is proportionally less frightening, but the consequent mortalities and morbidities are more alarming than pulmonary TB. Here, we address critical research gaps in Tuberculous Meningitis that warrant further investigations. The highlighted aspects encompass a comprehensive understanding of TBM's clinical presentation and improved diagnostic tools for timely detection, the exploration of innovative chemotherapies and surgical interventions, the unraveling of the role of the blood-brain barrier in disease onset, investigating of the contributions of various brain cells to TBM development, deciphering the complex inflammatory response, exploring the involvement of Matrix Metalloproteinases in tissue damage, delving into host-pathogen genetics influencing susceptibility, utilizing robust in-vivo and in-vitro models for mechanistic insights, and more importantly between TBM and SARS-COVID-19 are discussed. Addressing these gaps will substantially advance our understanding of TBM's complex pathogenesis, contributing to more effective diagnostic, therapeutic, and preventive strategies against this debilitating disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA