Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Reprod Infertil ; 22(4): 227-240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987984

RESUMO

BACKGROUND: Inflammation and its master regulator, Nuclear Factor-kB (NF-kB), have been implicated in the development of endometriosis. Inhibition of NF-kB pathway using small molecules ameliorated disease progression and reduced the lesion size; nevertheless, the underlying mechanism is not fully understood. Therefore, this study, is an attempt to assess whether inhibiting NF-kB signaling by aloe-emodin (AE) or aspirin (Asp), as anti-inflammatory compounds, can suppresses the invasive activity of human endometrial stromal cells at stage IV endometriosis. METHODS: The eutopic and healthy endometrial biopsies from a total of 8 infertile women with confirmed endometriosis and 8 women without endometriosis were digested and the single cells were cultured. Gene and protein markers of proliferation, migration, adhesion, and invasion of eutopic endometrial stromal cells (EuESCs) with and without treatment with AE or Asp, as well as control endometrial stromal cells (CESCs) was analyzed using q-PCR and immunofluorescence staining, respectively. Comparison between groups was performed using one-way ANOVA and the Bonferroni post hoc and p≤0.5 was considered statistically significant. RESULTS: There was an association between NF-kB overexpression and higher proliferation/adhesion capacity in EuESCs. EuESCs (at stage IV endometriosis) displayed no invasive and migratory behaviors. Pre-treatment of EuESCs with AE or Asp significantly attenuated NF-kB expression and reduced proliferative, adhesive, invasive, and migratory activity of endometrial cells (p≤0.5). CONCLUSION: Eutopic endometrial stromal cells seem to have a semi-invasive activity which is largely suppressed by AE or Asp. It can be suggested that both Asp and AE (as potent NF-kB inhibitors) can be used as a supplement in conventional endometriosis treatments.

2.
Colloids Surf B Biointerfaces ; 162: 362-369, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29241094

RESUMO

The interactions between monocytes and biomaterials can potentially be modulated by controlling the chemical and structural surface properties of biomaterials. The objective of this study was to determine the effect of plasma-deposited functional organic coatings on monocyte adhesion and differentiation into macrophages. Organic coatings with varying oxygen and nitrogen concentration were prepared by low-pressure plasma co-polymerization of binary gas mixtures combining a hydrocarbon (butadiene/ethylene) and a heteroatom-containing gas (carbon dioxide/ammonia) to deposit either oxygen or nitrogen-containing coatings. The deposition parameters controlled the composition of the coatings and, consequently, the surface charge (between 26 mV and -28 mV) and wettability. The adhesion of myeloid leukemia cell lines U937 and NB4 as well as human monocytes to plasma polymerized coatings, was tested using cell culture medium with and without fetal bovine serum. The results showed that the concentration of [-NH2] and [-COOH] on the surface of the plasma polymers, controls the adhesion of U937 and NB4 cell lines to the coatings. Thus, above a certain composition threshold, i.e. [-NH2]=2.6-3.0% and [-COOH]=1.2-1.57 nmol/cm2, the surface facilitates adhesion of both cell lines, irrespective of the culture medium used. Based on qualitative observations the number of monocytes adhering to the coatings was proportional to the concentration of functional groups at the surface of the coatings. The surface plasmon resonance results, in line with cell culture experiments, indicated that the presence of albumin on the surfaces with [-NH2] and [-COOH] above the determined critical concentration may be an indicator of monocyte adhesion to these plasma polymers.


Assuntos
Adesão Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Nitrogênio/química , Oxigênio/química , Benzaldeídos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Humanos , Gases em Plasma/farmacologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...