Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36234199

RESUMO

This paper studies the impact of the mass fraction of NiTi-TiB2 particles obtained by the method of self-propagating high-temperature synthesis (SHS) on the phase composition, structure, and mechanical properties of composites made by direct laser deposition from an Inconel 625-NiTiz-TiB2 powder mixture. Composites were obtained from a powder mixture with the mass fraction of particles at 5-10 wt%, and they consisted of an Inconel 625 metal matrix wherein ceramic inclusions of titanium diboride TiB2 were distributed. Increasing the mass fraction of SHS-produced NiTi particles from 30 to 95 wt% led to the emergence of a NiTi intermetallide phase in the matrix material as well as an increase in the average TiB2 particle size and formation of their agglomerates. In addition, an increase in the microhardness of the materials was observed. The graph of tensile strength of Inconel 625-NiTi-TiB2 samples has a parabolic shape with a maximum at 1000 MPa (when the mass fraction of SHS-produced NiTi-TiB2 particles is at 30 wt%). A further increase in the mass fraction of NiTi-TiB2 led to a decrease in the tensile strength down to 400 MPa. Here the deformation of samples decreases linearly as the ratio of composite particles in the initial mixture increases. From a comparative analysis of the results obtained, the optimal mass fraction of composite NiTi-TiB2 particles in the Inconel 625-NiTi-TiB2 powder mixture was found to be 5 wt%.

2.
Materials (Basel) ; 15(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35407999

RESUMO

In this study, we successfully obtained Al-TiB2 composite materials using self-propagating high-temperature synthesis and preliminary mechanical activation of the initial Al-(Ti + 2B) powder mixture with a high aluminum content (70 wt.%). We investigated the possibility of controlling the structure of synthesis products, in particular, the size and shape of ceramic particles. We examined the effects of the mechanical activation of the initial powder mixture on the structure and particle size of titanium diboride in the synthesis products. We proposed a mechanism of structure formation in the synthesis products obtained by SHS using the method of preliminary mechanical activation of the initial mixture. We found that mechanical activation for 60-180 s led to the formation of isolated TiB2 particles of prolate and irregular shape. The average particle size of TiB2 in the synthesis products was 0.77 (after 60 s of mechanical activation) and 1.5 µm (after 180 s of mechanical activation), respectively. An increase in the duration of mechanical activation to 900 s led to the formation of an island (skeletal) structure, in which there were interconnected aggregates and isolated particles of titanium diboride. The average size of these particles was 4.3 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...