Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38267776

RESUMO

Teacher motivation is considred as one of the most decisive factorts infulencing teacher functioing as well as students' achievement. Many variable can develop teacher motoivation. In this study, it is presumed that teacher engagement, comprising three facets of emotional, behavioral, and cognitive influence teacher motivation. To examine this hypothesis, this study takes the initiative to utiliuze an innovative artificial intelliengce (AI)-inspired approach called Ant Colony Optimization (ACO) technique. ACO is an artificial intelligence (AI) algorithm originating from natural phenomena. The concept originates from biology and physics and specifically from ants' movements. ACO has the ability to find the connections between inputs and outputs, and it can find the most influencing inputs. Motivation was the output of the study, and the inputs were three different engagement factors. Based on the results, ACO reached a high R-value meaning that it could predict the output with a high accuracy. The findings of this study substantiate the wide-ranging and multifacsted potentials of AI, in particular ACO, in studying and predicting human functioning in academic settings.

3.
Sci Rep ; 11(1): 20973, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697333

RESUMO

This paper is focused on the application and performance of artificial intelligence in the numerical modeling of nanofluid flows. Suspension of metallic nanoparticles in the fluids has shown potential in heat transfer enhancement of the based fluids. There are many numerical studies for the investigation of thermal and hydrodynamic characteristics of nanofluids. However, the optimization of the computational fluid dynamics (CFD) modeling by an artificial intelligence (AI) algorithm is not considered in any study. The CFD is a powerful technique from an accuracy point of view. However, it could be time and cost-consuming, especially in large-scale and complicated problems. It is expected that the machine learning technique of the AI algorithms could improve such CFD drawbacks by patterning the CFD data. Once the AI finds the CFD pattern intelligently, there is no need for CFD calculations. The particle swarm optimization-based fuzzy inference system (PSOFIS) is considered in this study to predict the velocity profile of Al2O3/water turbulent flow in a heated pipe. One of the challenging problems in CFD modeling is the lost data for a specific boundary condition. For example, the CFD data are available for wall heat fluxes of 75, 85, 105, and 125 w/m2, but there is no data for the wall heat flux of 95 w/m2. So, the PSOFIS learns the available CFD data, and it predicts the velocity profile for where the data is not available (i.e., wall heat flux of 95 w/m2). The intelligence of PSOFIS is checked by the coefficient of determination (R2 pattern) for different values of accept ratio (AR) and inertia weight damping ratio (IWDR). The best intelligence is obtained for the AR and IWDR of 0.7 and 0.99, respectively. At this condition, the velocity profile predicted by both CFD and PSOFIS is compatible. As the performance of the PSOFIS, for learning time of 268 s, the prediction of the CFD data lost was negligible (~ 1 s). In contrast, the CFD calculation takes around 600 s for each simulation.

4.
Sci Rep ; 11(1): 10623, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012076

RESUMO

The heat transfer improvements by simultaneous usage of the nanofluids and metallic porous foams are still an attractive research area. The Computational fluid dynamics (CFD) methods are widely used for thermal and hydrodynamic investigations of the nanofluids flow inside the porous media. Almost all studies dedicated to the accurate prediction of the CFD approach. However, there are not sufficient investigations on the CFD approach optimization. The mesh increment in the CFD approach is one of the challenging concepts especially in turbulent flows and complex geometries. This study, for the first time, introduces a type of artificial intelligence algorithm (AIA) as a supplementary tool for helping the CFD. According to the idea of this study, the CFD simulation is done for a case with low mesh density. The artificial intelligence algorithm uses learns the CFD driven data. After the intelligence achievement, the AIA could predict the fluid parameters for the infinite number of nodes or dense mesh without any limitations. So, there is no need to solve the CFD models for further nodes. This study is specifically focused on the genetic algorithm-based fuzzy inference system (GAFIS) to predict the velocity profile of the water-based copper nanofluid turbulent flow in a porous tube. The most intelligent GAFIS could perform the most accurate prediction of the velocity. Hence, the intelligence of GAFIS is tested for different values of cluster influence range (CIR), squash factor(SF), accept ratio (AR) and reject ratio (RR), the population size (PS), and the percentage of crossover (PC). The maximum coefficient of determination (~ 0.97) was related to the PS of 30, the AR of 0.6, the PC of 0.4, CIR of 0.15, the SF 1.15, and the RR of 0.05. The GAFIS prediction of the fluid velocity was in great agreement with the CFD. In the most intelligent condition, the velocity profile predicted by GAFIS was similar to the CFD. The nodes increment from 537 to 7671 was made by the GAFIS. The new predictions of the GAFIS covered all CFD results.

5.
Sci Rep ; 11(1): 9721, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958681

RESUMO

We employed a new approach in the field of social sciences or psychological aspects of teaching besides using a very common software package that is Statistical Package for the Social Sciences (SPSS). Artificial intelligence (AI) is a new domain that the methods of its data analysis could provide the researchers with new insights for their research studies and more innovative ways to analyze their data or verify the data with this method. Also, a very significant element in teaching is teacher motivation that is the trigger that pushes the teachers forward, depending on some internal and external factors. In the current study, seven research questions were designed to explore different aspects of teacher motivation, and they were analyzed via SPSS. The current study also compared the results by using an adaptive neuro-fuzzy inference system (ANFIS). Due to the similarity of ANFIS to humans' brain intelligence, the results of the current study could be similar to humans regarding what happens in reality. To do so, the researchers used the validated teacher motivation scale (TMS) and asked participants to fill the questionnaire, and analyzed the results. When the inputs were added to the ANFIS system, the model indicated a high accuracy and prediction capability. The findings also illustrated the importance of the tuning model parameters for the ANFIS method to build up the AI model with a high repeatability level. The differences between the results and conclusions are discussed in detail in the article.

6.
Sci Rep ; 11(1): 2380, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504889

RESUMO

In this investigation, differential evolution (DE) algorithm with the fuzzy inference system (FIS) are combined and the DE algorithm is employed in FIS training process. Considered data in this study were extracted from simulation of a 2D two-phase reactor in which gas was sparged from bottom of reactor, and the injected gas velocities were between 0.05 to 0.11 m/s. After doing a couple of training by making some changes in DE parameters and FIS parameters, the greatest percentage of FIS capacity was achieved. By applying the optimized model, the gas phase velocity in x direction inside the reactor was predicted when the injected gas velocity was 0.08 m/s.

7.
Sci Rep ; 11(1): 1505, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452362

RESUMO

Herein, a reactor of bubble column type with non-equilibrium thermal condition between air and water is mechanistically modeled and simulated by the CFD technique. Moreover, the combination of the adaptive network (AN) trainer with the fuzzy inference system (FIS) as the artificial intelligence method calling ANFIS has already shown potential in the optimization of CFD approach. Although the artificial intelligence method of particle swarm optimization (PSO) algorithm based fuzzy inference system (PSOFIS) has a good background for optimizing the other fields of research, there are not any investigations on the cooperation of this method with the CFD. The PSOFIS can reduce all the difficulties and simplify the investigation by elimination of the additional CFD simulations. In fact, after achieving the best intelligence, all the predictions can be done by the PSOFIS instead of the massive computational efforts needed for CFD modeling. The first aim of this study is to develop the PSOFIS for use in the CFD approach application. The second one is to make a comparison between the PSOFIS and ANFIS for the accurate prediction of the CFD results. In the present study, the CFD data are learned by the PSOFIS for prediction of the water velocity inside the bubble column. The values of input numbers, swarm sizes, and inertia weights are investigated for the best intelligence. Once the best intelligence is achieved, there is no need to mesh refinement in the CFD domain. The mesh density can be increased, and the newer predictions can be done in an easier way by the PSOFIS with much less computational efforts. For a strong verification, the results of the PSOFIS in the prediction of the liquid velocity are compared with those of the ANFIS. It was shown that for the same fuzzy set parameters, the PSOFIS predictions are closer to the CFD in comparison with the ANFIS. The regression number (R) of the PSOFIS (0.98) was a little more than that of the ANFIS (0.97). The PSOFIS showed a powerful potential in mesh density increment from 9477 to 774,468 and accurate predictions for the new nodes independent of the CFD modeling.

8.
Sci Rep ; 11(1): 1308, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446789

RESUMO

Computational fluid dynamics (CFD) simulating is a useful methodology for reduction of experiments and their associated costs. Although the CFD could predict all hydro-thermal parameters of fluid flows, the connections between such parameters with each other are impossible using this approach. Machine learning by the artificial intelligence (AI) algorithm has already shown the ability to intelligently record engineering data. However, there are no studies available to deeply investigate the implicit connections between the variables resulted from the CFD. The present investigation tries to conduct cooperation between the mechanistic CFD and the artificial algorithm. The genetic algorithm is combined with the fuzzy interface system (GAFIS). Turbulent forced convection of Al2O3/water nanofluid in a heated tube is simulated for inlet temperatures (i.e., 305, 310, 315, and 320 K). GAFIS learns nodes coordinates of the fluid, the inlet temperatures, and turbulent kinetic energy (TKE) as inputs. The fluid temperature is learned as output. The number of inputs, population size, and the component are checked for the best intelligence. Finally, at the best intelligence, a formula is developed to make a relationship between the output (i.e. nanofluid temperatures) and inputs (the coordinates of the nodes of the nanofluid, inlet temperature, and TKE). The results revealed that the GAFIS intelligence reaches the highest level when the input number, the population size, and the exponent are 5, 30, and 3, respectively. Adding the turbulent kinetic energy as the fifth input, the regression value increases from 0.95 to 0.98. This means that by considering the turbulent kinetic energy the GAFIS reaches a higher level of intelligence by distinguishing the more difference between the learned data. The CFD and GAFIS predicted the same values of the nanofluid temperature.

9.
Sci Rep ; 11(1): 60, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420204

RESUMO

Artificial intelligence (AI) techniques have illustrated significant roles in finding general patterns of CFD (Computational fluid dynamics) results. This study is conducted to develop combination of the ant colony optimization (ACO) algorithm with the fuzzy inference system (ACOFIS) for learning the CFD results of a physical case study. This binary join of the ACOFIS and CFD was used for pressure and temperature predictions of Al2O3/water nanofluid flow in a heated porous pipe. The intelligence of ACOFIS is investigated for different input numbers and pheromone effects, as the ant colony tuning parameter. The results showed that the intelligence of the ACOFIS could be found for three inputs (x and y nodes coordinates and nanoparticles fraction) and the pheromone effect of 0.1. At the system intelligence, the ACOFIS could predict the pressure and temperature of the nanofluid on any values of the nanoparticles fraction between 0.5 and 2%. Comparing the ANFIS and the ACOFIS, it was shown that both methods could reach the same accuracy in predictions of the nanofluid pressure and temperature. The root mean square error (RMSE) of the ACOFIS (~ 1.3) was a little more than that of the ANFIS (~ 0.03), while the total process time of the ANFIS (~ 213 s) was a bit more than that of the ACOFIS (~ 198 s). The AI algorithms process time (less than 4 min) shows their ability in the reduction of CFD modeling calculations and expenses.

10.
Sci Rep ; 11(1): 1209, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441681

RESUMO

Utilizing artificial intelligence algorithm of adaptive network-based fuzzy inference system (ANFIS) in combination with the computational lfuid dynamics (CFD) has recently revealed great potential as an auxiliary method for simulating challenging fluid mechnics problems. This research area is at the beginning, and needs sophisticated algorithms to be developed. No studies are available to consider the efficiency of the other trainers like differential evolution (DE) integrating with the FIS for capturing the pattern of the simulation results generated by CFD technique. Besides, the adjustment of the tuning parameters of the artificial intelligence (AI) algorithm for finding the highest level of intelligence is unavailable. The performance of AI algorithms in the meshing process has not been considered yet. Therfore, herein the Al2O3/water nanofluid flow in a porous pipe is simulated by a sophisticated hybrid approach combining mechnsitic model (CFD) and AI. The finite volume method (FVM) is employed as the CFD approach. Also, the differential evolution-based fuzzy inference system (DEFIS) is used for learning the CFD results. The DEFIS learns the nanofluid velocity in the y-direction, as output, and the nodes coordinates (i.e., x, y, and z), as inputs. The intelligence of the DEFIS is assessed by adjusting the methd's variables including input number, population number, and crossover. It was found that the DEFIS intelligence is related to the input number of 3, the crossover of 0.8, and the population number of 120. In addition, the nodes increment from 4833 to 774,468 was done by the DEFIS. The DEFIS predicted the velocity for the new dense mesh without using the CFD data. Finally, all CFD results were covered with the new predictions of the DEFIS.

11.
Sci Rep ; 11(1): 902, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441682

RESUMO

Heat transfer augmentation of the nanofluids is still an attractive concept for researchers due to rising demands for designing efficient heat transfer fluids. However, the pressure loss arisen from the suspension of nanoparticles in liquid is known as a drawback for developing such novel fluids. Therefore, prediction of the nanofluid pressure, especially in internal flows, has been focused on studies. Computational fluid dynamics (CFD) is a commonly used approach for such a prediction of fluid flow. The CFD tools are perfect and precise in prediction of the fluid flow parameters. But they might be time-consuming and expensive, especially for complex models such as 3-dimension modeling and turbulent flow. In addition, the CFD could just predict the pressure, and it is disabled for finding the relationship of such variables. This study is intended to show the performance of the artificial intelligence (AI) algorithm as an auxiliary method for cooperation with the CFD. The turbulent flow of Cu/water nanofluid warming up in a pipe is considered as a sample of a physical phenomenon. The AI algorithm learns the CFD results. Then, the relation between the CFD results is discovered by the AI algorithm. For this purpose, the adaptive network-based fuzzy inference system (ANFIS) is adopted as AI tool. The intelligence condition of the ANFIS is checked by benchmarking the CFD results. The paper outcomes indicated that the ANFIS intelligence is met by employing gauss2mf in the model as the membership function and x, y, and z coordinates, the nanoparticle volume fraction, and the temperature as the inputs. The pressure predicted by the ANFIS at this condition is the same as that predicted by the CFD. The artificial intelligence of ANFIS could find the relation of the nanofluid pressure to the nanoparticle fraction and the temperature. The CFD simulation took much more time (90-110 min) than the total time of the learning and the prediction of the ANFIS (369 s). The CFD modeling was done on a workstation computer, while the ANFIS method was run on a normal desktop.

12.
ACS Omega ; 6(1): 239-252, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458476

RESUMO

In predicting the turbulence property of gas (bubble) flow in the domain of continuous fluid and liquid, the integration of machine learning and computational fluid dynamics (CFD) methods reduces the overall computational time. This combination enables us to see the effective input parameters in the engineering process and the impact of operating conditions on final outputs, such as gas hold-up, heat and mass transfer, and the flow regime (uniform bubble distribution or nonuniform bubble properties). This paper uses the combination of machine learning and single-size calculation of the Eulerian method to estimate the gas flow distribution in the continuous liquid fluid. To present the machine-learning method besides the Eulerian method, an adaptive neuro-fuzzy inference system (ANFIS) is used to train the CFD finding and then estimate the flow based on the machine-learning method. The gas velocity and turbulent eddy dissipation rate are trained throughout the bubble column reactor (BCR) for each CFD node, and the artificial BCR is predicted by the ANFIS method. This smart reactor can represent the artificial CFD of the BCR, resulting in the reduction of expensive numerical simulations. The results showed that the number of inputs could significantly change this method's accuracy, representing the intelligence of method in the learning data set. Additionally, the membership function specifications can impact the accuracy, particularly, when the process is trained with different inputs. The turbulent eddy dissipation rate can also be predicted by the ANFIS method with a similar model pattern for air superficial gas velocity.

13.
Sci Rep ; 10(1): 22337, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339873

RESUMO

A nanofluid containing water and nanoparticles made of copper (Cu) inside a cavity with square shape is simulated utilizing the computational fluid dynamics (CFD) approach. The nanoparticles made up 15% of the nanofluid. By performing the simulation, the CFD output is characterized by the coordinates in the x, y, nanofluid temperature, and velocity in the y-direction that these outputs are obtained for different physical time iterations. Moreover, the CFD outputs are examined by one of the artificial techniques, i.e. adaptive network-based fuzzy inference system (ANFIS). For this purpose, the data was clustered via grid partition clustering, and the type of membership functions (MFs) was chosen product of two sigmoidal membership functions (psigmf). After reaching 99.9% of intelligence in ANFIS, the nanofluid temperature is predicted for the entire data, which are included in the learning processes. The results showed that the method of ANFIS can predict the thermal properties in different physical times at different computing points without having a training background at those times. Additionally, this study shows that with three membership functions at each input, the model's accuracy is higher than four functions.

14.
Sci Rep ; 10(1): 21884, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318542

RESUMO

In the current research paper a novel hybrid model combining first-principle and artificial intelligence (AI) was developed for simulation of a chemical reactor. We study a 2-dimensional reactor with heating sources inside it by using computational fluid dynamics (CFD). The type of considered reactor is bubble column reactor (BCR) in which a two-phase system is created. Results from CFD were analyzed in two different stages. The first stage, which is the learning stage, takes advantage of the swarm intelligence of the ant colony. The second stage results from the first stage, and in this stage, the predictions are according to the previous stage. This stage is related to the fuzzy logic system, and the ant colony optimization learning framework is build-up this part of the model. Ants movements or swarm intelligence of ants lead to the optimization of physical, chemical, or any kind of processes in nature. From point to point optimization, we can access a kind of group optimization, meaning that a group of data is studied and optimized. In the current study, the swarm intelligence of ants was used to learn the data from CFD in different parts of the BCR. The learning was also used to map the input and output data and find out the complex connection between the parameters. The results from mapping the input and output data show the full learning framework. By using the AI framework, the learning process was transferred into the fuzzy logic process through membership function specifications; therefore, the fuzzy logic system could predict a group of data. The results from the swarm intelligence of ants and fuzzy logic suitably adapt to CFD results. Also, the ant colony optimization fuzzy inference system (ACOFIS) model is employed to predict the temperature distribution in the reactor based on the CFD results. The results indicated that instead of solving Navier-Stokes equations and complex solving procedures, the swarm intelligence could be used to predict a process. For better comparisons and assessment of the ACOFIS model, this model is compared with the genetic algorithm fuzzy inference system (GAFIS) and Particle swarm optimization fuzzy inference system (PSOFIS) method with regards to model accuracy, pattern recognition, and prediction capability. All models are at a similar level of accuracy and prediction ability, and the prediction time for all models is less than one second. The results show that the model's accuracy with low computational learning time can be achieved with the high number of CIR (0.5) when the number of inputs ≥ 4. However, this finding is vice versa, when the number of inputs < 4. In this case, the CIR number should be 0.2 to achieve the best accuracy of the model. This finding could also highlight the importance of sensitivity analysis of tuning parameters to achieve an accurate model with a cost-effective computational run.

15.
Sci Rep ; 10(1): 21502, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299033

RESUMO

For understanding the complex behavior of fluids in a multiphase chemical bubble column reactor, a combination of the computational fluid dynamic (CFD) method and the adaptive network-based fuzzy inference system (ANFIS) method is used to predict bubble flow inside a reactor based on the function of column height. In this study, the Euler-Euler model is employed as a CFD method. In the Eulerian method, continuity and momentum governing equations are mathematically computed for each phase, while the equations are connected together by source terms. After calculating the flow pattern and turbulence flow in the reactor, all data sets are used to prepare a fully artificial method for further prediction. This algorithm contains different learning dimensions such as learning in different directions of reactor or large amount of input parameters and data set representing "big data". The ANFIS method was evaluated in three steps by using one, two, and three inputs in each one to predict the liquid velocity in the x-direction (Ux). The x, y, and z coordinates of the location of the node of the liquid were considered as the inputs. Different percentages of data and various iterations and membership functions were used for training in the ANFIS method. The ANFIS method showed the best prediction using three inputs. This combination also shows the ability of computer science and computational methods in learning physical and chemical phenomena.

16.
ACS Omega ; 5(48): 30826-30835, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33324792

RESUMO

This investigation is conducted to study the integration of the artificial intelligence (AI) method with computational fluid dynamics (CFD). The case study is hydrodynamic and heat-transfer analyses of water flow in a metal foam tube under a constant wall heat flux (i.e., 55 kW/m2). The adaptive network-based fuzzy inference system (ANFIS) is an AI method. A 3D CFD model is established in ANSYS-FLUENT software. The velocity of the fluid in the x-direction (Ux) is considered as an output of the ANFIS. The x, y, and z coordinates of the node's location are added to the ANFIS step-by-step to achieve the best intelligence. The number and type of membership functions (MFs) are changed in each step. The training process is done by the CFD results on the tube cross-sections at different lengths (i.e., z = 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, and 0.9), while all data (including z = 0.5) are selected for the testing process. The results showed that the ANFIS reaches the best intelligence with all three inputs, five MFs, and "gbellmf"-type MF. At this condition, the regression number is close to 1.

17.
Sci Rep ; 10(1): 21304, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277606

RESUMO

Bubbly flow behavior simulation in two-phase chemical reactors such bubble column type reactors is widely employed for chemical industry purposes. The computational fluid dynamics (CFD) approach has been employed by engineers and researchers for modeling these types of chemical reactors. In spite of the CFD robustness for simulating transport phenomena and chemical reactions in these reactors, this approach has been known as expensive for modeling such turbulent complex flows. Artificial intelligence (AI) algorithm of the adaptive network-based fuzzy inference system (ANFIS) are largely understood and utilized for the CFD approach optimization. In this hybrid approach, the CFD findings are learned by AI algorithms like ANFIS to save computational time and expenses. Once the pattern of the CFD results have been captured by the AI model, this hybrid model can be then used for process simulation and optimization. As such, there is no need for further simulations of new conditions. The objective of this paper is to obviate the need for expensive CFD computations for two-phase flows in chemical reactors via coupling CFD data to an AI algorithm, i.e., differential evolution based fuzzy inference system (DEFIS). To do so, air velocity as the output and the values of the x, and y coordinates, water velocity, and time step as the inputs are inputted the AI model for learning the flow pattern. The effects of cross over as the DE parameter and also the number of inputs on the best intelligence are investigated. Indeed, DEFIS correlates the air velocity to the nodes coordinates, time, and liquid velocity and then after the CFD modeling could be replaced with the simple correlation. For the first time, a comparison is made between the ANFIS and the DEFIS performances in terms of the prediction capability of the gas (air) velocity. The results released that both ANFIS and DEFIS could accurately predict the CFD pattern. The prediction times of both methods were obtained to be equal. However, the learning time of the DEFIS was fourfold of ANFIS.

18.
Sci Rep ; 10(1): 19280, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159145

RESUMO

The insertion of porous metal media inside the pipes and channels has already shown a significant heat transfer enhancement by experimental and numerical studies. Porous media could make a mixing flow and small-scale eddies. Therefore, the turbulence parameters are attractive in such cases. The computational fluid dynamics (CFD) approach can predict the turbulence parameters using the turbulence models. However, the CFD is unable to find the relation of the turbulence parameters to the boundary conditions. The artificial intelligence (AI) has shown potential in combination with the CFD to build high-performance predictive models. This study is aimed to establish a new AI algorithm to capture the patterns of the CFD results by changing the system's boundary conditions. The ant colony optimization-based fuzzy inference system (ACOFIS) method is used for the first time to reduce time and computational effort needed in the CFD simulation. This investigation is done on turbulent forced convection of water through an aluminum metal foam tube under constant wall heat flux. The ANSYS-FLUENT CFD software is used for the simulations. The x and y of the fluid nodal locations, inlet temperature, velocity, and turbulent kinetic energy (TKE) are the inputs of the ACOFIS to predict turbulence eddy dissipation (TED) as the output. The results revealed that for the best intelligence of the ACOFIS, the number of inputs, the number of ants, the number of membership functions (MFs) and the rule are 5, 10, 93 and 93, respectively. Further comparison is made with the adaptive network-based fuzzy inference system (ANFIS). The coefficient of determination for both methods was close to 1. The ANFIS showed more learning and prediction times (785 s and 10 s, respectively) than the ACOFIS (556 s and 3 s, respectively). Finding the member function versus the inputs, the value of TED is calculated without the CFD modeling. So, solving the complicated equations by the CFD is replaced with a simple correlation.

19.
Sci Rep ; 10(1): 16110, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999437

RESUMO

In membrane separation technologies, membrane modules are used to separate chemical components. In membrane technology, understanding the behavior of fluids inside membrane module is challenging, and numerical methods are possible by using computational fluid dynamics (CFD). On the other hand, the optimization of membrane technology via CFD needs time and computational costs. Artificial Intelligence (AI) and CFD together can model a chemical process, including membrane technology and phase separation. This process can learn the process by learning the neural networks, and point by point learning of CFD mesh elements (computing nodes), and the fuzzy logic system can predict this process. In the current study, the adaptive neuro-fuzzy inference system (ANFIS) model and different parameters of ANFIS for learning a process based on membrane technology was used. The purpose behind using this model is to see how different tuning parameters of the ANFIS model can be used for increasing the exactness of the AI model and prediction of the membrane technology. These parameters were changed in this study, and the accuracy of the prediction was investigated. The results indicated that with low number of inputs, poor regression was obtained, less than 0.32 (R-value), but by increasing the number of inputs, the AI algorithm led to an increase in the prediction capability of the model. When the number of inputs increased to 4, the R-value was increased to 0.99, showing the high accuracy of model as well as its high capability in prediction of membrane process. The AI results were in good agreement with the CFD results. AI results were achieved in a limited time and with low computational costs. In terms of the categorization of CFD data-set, the AI framework plays a critical role in storing data in short memory, and the recovery mechanism can be very easy for users. Furthermore, the results were compared with Particle Swarm Optimization (PSOFIS), and Genetic Algorithm (GAFIS). The time for prediction and learning were compared to study the capability of the methods in prediction and their accuracy.

20.
ACS Omega ; 5(40): 25882-25890, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33073113

RESUMO

The integration of the computational fluid dynamics (CFD) and the adaptive network-based fuzzy inference system, known as ANFIS, is investigated for simulating the hydrodynamic in a bubble column reactor. The Eulerian-Eulerian two-phase model is employed as the CFD approach. For the ANFIS technique, a sensitivity analysis is done by varying the number of inputs and the number of membership functions (MFs). The x and z coordinates of the fluid location, the air velocity, and the pressure are considered as the inputs of the ANFIS, while the air vorticity is the output. The results revealed that the ANFIS with all four inputs and the MFs of five achieved the highest intelligence with the regression number close to 1. More specifically, gbell function in the learning framework is used to train all local computing nodes from solving Navier-Stokes equations. In the decision or prediction part, the fuzzy mechanism is used for the prediction of extra nodes that solve, which Navier-Stokes equations did not solve. The results show that the gbell function enables us to fully train all numerical points and also store data set in the frame of mathematical equations. Besides, this function responds well with the number of inputs and MFs for accurate prediction of reactor hydrodynamics. Additionally, a high number of MFs and input parameters influence the accuracy of the method during prediction. In the current study, gbell MF was studied to investigate its accuracy in the prediction of the two-phase flow. Also, different numbers of MFs were considered to investigate the level of accuracy and capability of prediction. ANFIS clustering methods, grid partition and fuzzy C-mean (FCM) clustering, are compared to see the ability of the method in prediction. To compare the accuracy of the ANFIS method with FCM clustering, the data were compared to the gaussmf function. The results showed that the method has high accuracy and that it could predict the flow pattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...