Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Nucl Med ; 47(9): 763-773, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35543643

RESUMO

ABSTRACT: PET imaging plays an essential role in achieving earlier and more specific diagnoses of dementia syndromes, important for clinical prognostication and optimal medical management. This has become especially vital with the recent development of pathology-specific disease-modifying therapy for Alzheimer disease, which will continue to evolve and require methods to select appropriate treatment candidates. Techniques that began as research tools such as amyloid and tau PET have now entered clinical use, making nuclear medicine physicians and radiologists essential members of the care team. This review discusses recent changes in the understanding of dementia and examines the roles of nuclear medicine imaging in clinical practice. Within this framework, multiple cases will be shown to illustrate a systematic approach of FDG PET interpretation and integration of PET imaging of specific molecular pathology including dopamine transporters, amyloid, and tau. The approach presented here incorporates contemporary understanding of both common and uncommon dementia syndromes, intended as an updated practical guide to assist with the sophisticated interpretation of nuclear medicine examinations in the context of this rapidly and continually developing area of imaging.


Assuntos
Doença de Alzheimer , Demência , Doença de Alzheimer/diagnóstico , Amiloide/metabolismo , Encéfalo/metabolismo , Demência/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons/métodos , Síndrome
2.
J Immunol ; 197(5): 1692-8, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27448587

RESUMO

Transient lymphopenia is one hallmark of sepsis, and emergent data indicate the CD4 T cell compartment in sepsis survivors is numerically and functionally altered (when examined at the Ag-specific level) compared with nonseptic control subjects. Previous data from our laboratory demonstrated Ag-independent, lymphopenia-induced homeostatic proliferation to be a contributing mechanism by which CD4 T cells numerically recover in sepsis survivors. However, we reasoned it is also formally possible that some CD4 T cells respond directly to Ag expressed by gut-resident microbes released during polymicrobial sepsis. The effect of gut microbiome leakage on CD4 T cells is currently unknown. In this study, we explored the number and function of endogenous CD4 T cells specific for segmented filamentous bacterium (SFB) after cecal ligation and puncture (CLP)-induced sepsis using mice that either contained or lacked SFB as a normal gut-resident microbe. Interestingly, SFB-specific CD4 T cells underwent Ag-driven proliferation in CLP-treated SFB(+), but not in SFB(-), mice. Moreover, CLP-treated SFB(+) mice showed resistance to secondary lethal infection with recombinant SFB Ag-expressing virulent Listeria (but not wild-type virulent Listeria), suggesting the CLP-induced polymicrobial sepsis primed for a protective response by the SFB-specific CD4 T cells. Thus, our data demonstrate that the numerical recovery and functional responsiveness of Ag-specific CD4 T cells in sepsis survivors is, in part, modulated by the intestinal barrier's health discreetly defined by individual bacterial populations of the host's microbiome.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Microbioma Gastrointestinal , Sepse/imunologia , Sepse/microbiologia , Animais , Ceco/cirurgia , Citometria de Fluxo , Microbioma Gastrointestinal/imunologia , Intestinos/microbiologia , Listeria/química , Listeria/imunologia , Listeria/patogenicidade , Linfopenia/complicações , Camundongos , Camundongos Endogâmicos C57BL
3.
J Immunol ; 187(5): 2148-54, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21788440

RESUMO

Sepsis is the leading cause of death in most intensive care units, and patients who survive the hyperinflammation that develops early during sepsis later display severely compromised immunity. Not only is there apoptosis of lymphoid and myeloid cells during sepsis that depletes these critical cellular components of the immune system, but also the remaining immune cells show decreased function. Using a cecal-ligation and puncture (CLP) model to induce intra-abdominal polymicrobial peritonitis, we recently established a link between the apoptotic cells generated during sepsis and induction of sepsis-induced suppression of delayed-type hypersensitivity. The present study extends this earlier work to include a secondary heterologous bacterial infection (OVA(257)-expressing Listeria monocytogenes [LM-OVA]) subsequent to sepsis initiation to investigate sepsis-induced alterations in the control of this secondary infection and the associated naive Ag-specific CD8 T cell response. We found that CLP-treated wild-type (WT) mice had a reduced ability to control the LM-OVA infection, which was paralleled by suppressed T cell responses, versus sham-treated WT mice. In contrast, CLP-treated Trail(-/-) and Dr5(-/-) mice were better able to control the secondary bacterial infection, and the Ag-specific CD8 T cell response was similar to that seen in sham-treated mice. Importantly, administration of a blocking anti-TRAIL mAb to CLP-treated WT mice was able to restore the ability to control the LM-OVA infection and generate Ag-specific CD8 T cell responses like those seen in sham-treated mice. These data further implicate TRAIL-dependent immune suppression during sepsis and suggest TRAIL neutralization may be a potential therapeutic target to restore cellular immunity in septic patients.


Assuntos
Tolerância Imunológica/imunologia , Listeriose/imunologia , Sepse/complicações , Sepse/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Animais , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...