Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 939: 175467, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36543288

RESUMO

Artemisinin and its derivatives are the main therapeutic drugs against Plasmodium protists, the causative agents of malaria. While several putative mechanisms of action have been proposed, the precise molecular targets of these compounds have not been fully elucidated. In addition to their antimalarial properties, artemisinins have been reported to act as anti-tumour agents and certain antinociceptive effects have also been proposed. We investigated the effect of the parent compound, artemisinin, on a number of temperature-gated Transient Receptor Potential ion channels (so called thermoTRPs), given their demonstrated roles in pain-sensing and cancer. We report that artemisinin acts as an agonist of the Transient Receptor Potential Ankyrin type 1 (TRPA1) receptor channel. Artemisinin was able to evoke calcium transients in HEK293T cells expressing recombinant human TRPA1, as well as in a subpopulation of mouse dorsal root ganglion (DRG) neurons which also responded to the selective TRPA1 agonist allyl isothiocyanate (AITC) and these responses were reversibly abolished by the selective TRPA1 antagonist A967079. Artemisinin also triggered whole-cell currents in HEK293T cells transiently transfected with human TRPA1, as well as in TRPA1-expressing DRG neurons, and these currents were inhibited by A967079. Interestingly, using human TRPA1 mutants, we demonstrate that artemisinin acts as a non-electrophilic agonist of TRPA1, activating the channel in a similar manner to carvacrol and menthol. These results may provide a better understanding of the biological actions of the very important antimalarial and anti-tumour agent artemisinin.


Assuntos
Antimaláricos , Artemisininas , Canais de Potencial de Receptor Transitório , Animais , Humanos , Camundongos , Anquirinas/química , Anquirinas/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Artemisininas/química , Artemisininas/farmacologia , Gânglios Espinais , Células HEK293 , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/química , Canal de Cátion TRPA1
2.
Neurosci Lett ; 764: 136286, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624396

RESUMO

Over the last 17 years since its cloning in 2003, the receptor-channel TRPA1 has received increasing attention due to its polymodal features and prominent role in pain signaling in a variety of human disease states. While evidence has been accumulating for non-neuronal TRPA1 expression, it is the presence of this channel in nociceptive nerve endings which has taken centre stage, due to its potential clinical ramifications. As a consequence, we shall focus in this review on the sensory functions of TRPA1 related to its expression in the peripheral nervous system. While substantial research has been focused on the putative role of TRPA1 in detecting irritant compounds, noxious cold and mechanical stimuli, the current overall picture is, to some extent, still cloudy. The chemosensory function of the channel is well demonstrated, as well as its involvement in the detection of oxidative and nitrosative stress; however, the other sensory features of TRPA1 have not been fully elucidated yet. The current state of the experimental evidence for these physiological roles of TRPA1 in mammals, and particularly in humans, will be discussed in this review.


Assuntos
Dor Crônica/patologia , Mecanotransdução Celular/fisiologia , Nociceptividade/fisiologia , Canal de Cátion TRPA1/metabolismo , Animais , Temperatura Baixa/efeitos adversos , Humanos , Oxirredução , Pele/metabolismo
3.
Cell Cycle ; 17(6): 766-779, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29417873

RESUMO

Human leukemia Jurkat T cells were analyzed for apoptosis and cell cycle by flow cytometry, using the Annexin V/propidium iodide (PI) standard assay, and a simple PI staining in Triton X-100/digitonin-enriched PI/RNase buffer, respectively. Cells treated with doxorubicin or menadione displayed a very strong correlation between the apoptotic cell fraction measured by the Annexin V/PI assay, and the weight of a secondary cell population that emerged on the forward scatter (FS)/PI plot, as well as on the side scatter (SS)/PI and FL1/PI plots generated from parallel cell cycle recordings. In both cases, the Pearson correlation coefficients were >0.99. In cell cycle determinations, PI fluorescence was detected on FL3 (620/30 nm), and control samples exhibited the expected linear dependence of FL3 on FL1 (525/40 nm) signals. However, increasing doses of doxorubicin or menadione generated a growing subpopulation of cells displaying a definite right-shift on the FS/FL3, SS/FL3 and FL1/FL3 plots, as well as decreased PI fluorescence, indicative of ongoing fragmentation and loss of nuclear DNA. By gating on these events, the resulting fraction of presumably sub-cycling cells (i.e. cells with cleaved DNA, counting sub-G0/G1, sub-S and sub-G2/M cells altogether) was closely similar to the apoptotic rate assessed by Annexin V/PI labeling. Taken together, these findings suggest a possible way to recognize the entire population of cells undergoing apoptotic DNA cleavage and simultaneously determine the cell cycle distribution of non-apoptotic cells in PI-labeled cell samples with various degrees of DNA fragmentation, using a simple and reproducible multiparametric analysis of flow cytometric recordings.


Assuntos
Fragmentação do DNA , Citometria de Fluxo/métodos , Propídio/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Doxorrubicina/toxicidade , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Células Jurkat , Vitamina K 3/toxicidade
4.
Toxicol Appl Pharmacol ; 336: 55-65, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054683

RESUMO

Praziquantel is the most effective anthelminthic drug for the treatment of schistosomiasis, an infectious disease caused by the platyhelminth Schistosoma mansoni. While praziquantel is known to trigger calcium influx into schisostomes, followed by spastic paralysis of the worms and tegumental disruption, the mechanism of action of the drug is not completely understood. Although relatively well tolerated, praziquantel has been reported to cause mild adverse effects, including nausea, abdominal pain and headaches. As a number of putative Transient Receptor Potential (TRP) channel genes have recently been predicted in S. mansoni, we sought to investigate the effect of praziquantel on three mammalian TRP channels, TRP melastatin type 8 (TRPM8), TRP vanilloid type 1 (TRPV1) and TRP ankyrin type 1 (TRPA1). Using calcium microfluorimetry and the patch clamp technique, we recorded the effect of praziquantel on HEK293T cells expressing recombinant TRPM8, TRPV1 or TRPA1, as well as on cultured dorsal root ganglion (DRG) neurons from wild type and TRPM8 null mutant mice. We discovered that praziquantel is a relatively potent and selective partial agonist of the mammalian and avian cold and menthol receptor TRPM8. The activation of cultured DRG neurons by clinically relevant concentrations of praziquantel is predominantly mediated by TRPM8. Our results may provide clues to a better understanding of praziquantel's mechanism of action and its adverse effects.


Assuntos
Anti-Helmínticos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Praziquantel/farmacologia , Canais de Cátion TRPM/agonistas , Anilidas/farmacologia , Animais , Anti-Helmínticos/toxicidade , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Agonismo Parcial de Drogas , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Potenciais da Membrana , Mentol/análogos & derivados , Mentol/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Praziquantel/toxicidade , Ratos Wistar , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Transfecção
6.
Leuk Res ; 38(7): 836-49, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24862793

RESUMO

The flavonoid quercetin and menadione (vitamin K3) are known as potent apoptogens in human leukemia Jurkat T cells. We explored some underlying mechanisms and the potential relevance of the combination quercetin-menadione for clinical applications. In acute treatments, quercetin manifested a strong antioxidant character, but induced a transient loss of Δψm, likely mediated by opening of the mitochondrial permeability transition pore. After removal of quercetin, persistent mitochondrial hyperpolarization was generated via stimulation of respiratory Complex I. In contrast, menadione-induced Δψm dissipation was only partially and transiently reversed after menadione removal. Results indicate that Ca(2+) release is a necessary event in quercetin-induced cell death and that the survival response to quercetin is delineated within 1h from exposure. Depending on dose, the two agents exhibited either antagonistic or synergistic effects in reducing clonogenicity of Jurkat cells. 24-h combinatorial regimens at equimolar concentrations of 10-15 µM, which are compatible with a clinically achievable (and safe) scheme, reduced cell viability at efficient rates. Altogether, these findings support the idea that the combination quercetin-menadione could improve the outcome of conventional leukemia therapies, and warrant the utility of additional studies to investigate the therapeutic effects of this combination in different cellular or animal models for leukemia.


Assuntos
Leucemia/tratamento farmacológico , Quercetina/farmacologia , Vitamina K 3/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Células Jurkat , Leucemia/patologia , Potenciais da Membrana/efeitos dos fármacos , NAD/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia
7.
J Pharmacol Exp Ther ; 347(2): 529-39, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23926288

RESUMO

High concentrations of nicotine, as in the saliva of oral tobacco consumers or in smoking cessation aids, have been shown to sensitize/activate recombinant transient receptor potential vanilloid type 1 (rTRPV1) and mouse TRPA1 (mTRPA1) channels. By measuring stimulated calcitonin gene-related peptide (CGRP) release from the isolated mouse trachea, we established a bimodal concentration-response relationship with a threshold below 10 µM (-)-nicotine, a maximum at 100 µM, an apparent nadir between 0.5 and 10 mM, and a renewed increase at 20 mM. The first peak was unchanged in TRPV1/A1 double-null mutants as compared with wild-types and was abolished by specific nicotinic acetylcholine receptor (nAChR) inhibitors and by camphor, discovered to act as nicotinic antagonist. The nicotine response at 20 mM was strongly pHe-dependent, - five times greater at pH 9.0 than 7.4, indicating that intracellular permeation of the (uncharged) alkaloid was required to reach the TRPV1/A1 binding sites. The response was strongly reduced in both null mutants, and more so in double-null mutants. Upon measuring calcium transients in nodose/jugular and dorsal root ganglion neurons in response to 100 µM nicotine, 48% of the vagal (but only 14% of the somatic) sensory neurons were activated, the latter very weakly. However, nicotine 20 mM at pH 9.0 repeatedly activated almost every single cultured neuron, partly by releasing intracellular calcium and independent of TRPV1/A1 and nAChRs. In conclusion, in mouse tracheal sensory nerves nAChRs are 200-fold more sensitive to nicotine than TRPV1/A1; they are widely coexpressed with the capsaicin receptor among vagal sensory neurons and twice as abundant as TRPA1. Nicotine is the major stimulant in tobacco, and its sensory impact through nAChRs should not be disregarded.


Assuntos
Gânglios Sensitivos/efeitos dos fármacos , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Traqueia/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Gânglios Sensitivos/metabolismo , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicotina/administração & dosagem , Receptores Nicotínicos/genética , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPV/genética , Traqueia/metabolismo , Canais de Potencial de Receptor Transitório/genética
8.
Curr Pharm Biotechnol ; 12(1): 78-88, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20932256

RESUMO

Temperature sensing is a crucial feature of the nervous system, enabling organisms to avoid physical danger and choose optimal environments for survival. TRPM8 (Transient Receptor Potential Melastatin type 8) belongs to a select group of ion channels which are gated by changes in temperature, are expressed in sensory nerves and/or skin cells and may be involved in temperature sensing. This channel is activated by a moderate decrease in temperature, with a threshold of approximately 25 °C in heterologous expression systems, and by a variety of natural and synthetic compounds, including menthol. While the physiological role of TRPM8 as a transducer of gentle cooling is widely accepted, its involvement in acute noxious cold sensing in healthy tissues is still under debate. Although accumulating evidence indicates that TRPM8 is involved in neuropathic cold allodynia, in some animal models of nerve injury peripheral and central activation of TRPM8 is followed by analgesia. A variety of inflammatory mediators, including bradykinin and prostaglandin E(2), modulate TRPM8 by inhibiting the channel and shifting its activation threshold to colder temperatures, most likely counteracting the analgesic action of TRPM8. While important progress has been made in unraveling the biophysical features of TRPM8, including the revelation of its voltage dependence, the precise mechanism involved in temperature sensing by this channel is still not completely understood. This article will review the current status of knowledge regarding the (patho)physiological role(s) of TRPM8, its modulation by inflammatory mediators, the signaling pathways involved in this regulation, and the biophysical properties of the channel.


Assuntos
Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/fisiologia , Sensação Térmica , Animais , Temperatura Baixa , Humanos , Mamíferos , Mentol/metabolismo , Transdução de Sinais , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...