Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853778

RESUMO

The fifth modeling workshop (5MW) was held in June 2023 at Favrholm, Denmark and sponsored by Recovery of Biological Products Conference Series. The goal of the workshop was to assemble modeling practitioners to review and discuss the current state, progress since the last fourth mini modeling workshop (4MMW), gaps and opportunities for development, deployment and maintenance of models in bioprocess applications. Areas of focus were four categories: biophysics and molecular modeling, mechanistic modeling, computational fluid dynamics (CFD) and plant modeling. Highlights of the workshop included significant advancements in biophysical/molecular modeling to novel protein constructs, mechanistic models for filtration and initial forays into modeling of multiphase systems using CFD for a bioreactor and mapped strategically to cell line selection/facility fit. A significant impediment to more fully quantitative and calibrated models for biophysics is the lack of large, anonymized datasets. A potential solution would be the use of specific descriptors in a database that would allow for detailed analyzes without sharing proprietary information. Another gap identified was the lack of a consistent framework for use of models that are included or support a regulatory filing beyond the high-level guidance in ICH Q8-Q11. One perspective is that modeling can be viewed as a component or precursor of machine learning (ML) and artificial intelligence (AI). Another outcome was alignment on a key definition for "mechanistic modeling." Feedback from participants was that there was progression in all of the fields of modeling within scope of the conference. Some areas (e.g., biophysics and molecular modeling) have opportunities for significant research investment to realize full impact. However, the need for ongoing research and development for all model types does not preclude the application to support process development, manufacturing and use in regulatory filings. Analogous to ML and AI, given the current state of the four modeling types, a prospective investment in educating inter-disciplinary subject matter experts (e.g., data science, chromatography) is essential to advancing the modeling community.

2.
Biotechnol Bioeng ; 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661710

RESUMO

The design of biopharmaceutical processes is predominantly driven by the domain of experimental process design. This approach can be further improved by combining multiple domain information such as experiments, unit models, and flowsheet models. Approaches consisting of methods and flowsheet models provide the framework for exploring, analyzing, and ultimately evaluating the combinatorial space of all possible designs within the molecule-to-manufacturing value chain. In recent years, modular process designs are of interest in the pharmaceutical industry because of the shift toward multiproduct, mutiprocess processes. Therefore, a systematic approach for how to evaluate the utilization of the modular plug-n-play concept provides metrics that can propel modular design from a viable design alternative to the selected alternative for full-scale manufacturing. The objective of this paper is to present such an in silico approach for the evaluation of modular designs. The approach is presented as a systematic method and then, is exemplified through the manufacture of an active pharmaceutical ingredient (API). The application of the method shows how to transition from a typical design-for-purpose design alternative to a modular design through the utilization of data, modeling, simulation, and uncertainty/sensitivity analyses for quantification of various selection metrics such as process robustness and flexibility.

3.
Biotechnol Bioeng ; 117(12): 3986-4000, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32725887

RESUMO

The Third Modeling Workshop focusing on bioprocess modeling was held in Kenilworth, NJ in May 2019. A summary of these Workshop proceedings is captured in this manuscript. Modeling is an active area of research within the biotechnology community, and there is a critical need to assess the current state and opportunities for continued investment to realize the full potential of models, including resource and time savings. Beyond individual presentations and topics of novel interest, a substantial portion of the Workshop was devoted toward group discussions of current states and future directions in modeling fields. All scales of modeling, from biophysical models at the molecular level and up through large scale facility and plant modeling, were considered in these discussions and are summarized in the manuscript. Model life cycle management from model development to implementation and sustainment are also considered for different stages of clinical development and commercial production. The manuscript provides a comprehensive overview of bioprocess modeling while suggesting an ideal future state with standardized approaches aligned across the industry.


Assuntos
Biotecnologia , Simulação por Computador , Modelos Teóricos
4.
Annu Rev Chem Biomol Eng ; 7: 557-82, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27088667

RESUMO

Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates.


Assuntos
Desenho Assistido por Computador , Compostos Inorgânicos/química , Modelos Químicos , Compostos Orgânicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...