Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36432257

RESUMO

In this work, we demonstrate the features of a two-stage epitaxial growth technique and show the results of power and efficiency measurements for three different designs of quantum cascade lasers with a record-high peak power in the 8 µm spectral region. The time-resolved QCL spectral study proves that InP-based upper cladding paired with an InP contact layer provides better heat dissipation and allows one to reach better power characteristics in comparison with InGaAs-based contact, even with short pulse pumping.

2.
Nanotechnology ; 33(39)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35700698

RESUMO

A tridimensional mathematical model to calculate the electron beam induced current (EBIC) of an axial p-n nanowire junction is proposed. The effect of the electron beam and junction parameters on the distribution of charge carriers and on the collected EBIC current is reported. We demonstrate that the diffusion of charge carriers within the wire is strongly influenced by the electrical state of its lateral surface which is characterized by a parameter called surface recombination velocity (vr). When the surface recombination is weak (i.e. lowvrvalue), the diffusion of charge carriers occurs in one dimension (1D) along the wire axis, and, in this case, the use of bulk EBIC models to extract the diffusion length (L) of charge carriers is justified. However, when the surface effects are strong (i.e. highvrvalues), the diffusion happens in three dimensions (3D). In this case, the EBIC profiles depend onvrvalue and two distinct cases can be defined. If theLis larger than the nanowire radius (ra), the EBIC profiles show a strong dependency with this parameter. This gives evidence that the recombination of generated carriers on the surface throughvris the dominant process. In this situation, a decrease of two orders of magnitude in the EBIC profiles computed with a high and a lowvrvalue is observed in neutral regions of the junction. For the case ofLsmaller thanrathe dependency of the EBIC profiles on thevris weak, and the prevalent recombination mechanism is the bulk recombination process.

3.
Nanotechnology ; 32(8): 085705, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33171444

RESUMO

We analyse the electrical and optical properties of single GaN nanowire p-n junctions grown by plasma-assisted molecular-beam epitaxy using magnesium and silicon as doping sources. Different junction architectures having either a n-base or a p-base structure are compared using optical and electrical analyses. Electron-beam induced current (EBIC) microscopy of the nanowires shows that in the case of a n-base p-n junction the parasitic radial growth enhanced by the magnesium (Mg) doping leads to a mixed axial-radial behaviour with strong wire-to-wire fluctuations of the junction position and shape. By reverting the doping order p-base p-n junctions with a purely axial well-defined structure and a low wire-to-wire dispersion are achieved. The good optical quality of the top n nanowire segment grown on a p-doped stem is preserved. A hole concentration in the p-doped segment exceeding 1018 cm-3 was extracted from EBIC mapping and photoluminescence analyses. This high concentration is reached without degrading the nanowire morphology.

4.
Nanomaterials (Basel) ; 10(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207755

RESUMO

We analyze the thermal behavior of a flexible nanowire (NW) light-emitting diode (LED) operated under different injection conditions. The LED is based on metal-organic vapor-phase deposition (MOCVD)-grown self-assembled InGaN/GaN NWs in a polydimethylsiloxane (PDMS) matrix. Despite the poor thermal conductivity of the polymer, active nitride NWs effectively dissipate heat to the substrate. Therefore, the flexible LED mounted on a copper heat sink can operate under high injection without significant overheating, while the device mounted on a plastic holder showed a 25% higher temperature for the same injected current. The efficiency of the heat dissipation by nitride NWs was further confirmed with finite-element modeling of the temperature distribution in a NW/polymer composite membrane.

5.
Netw Neurosci ; 3(3): 707-724, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410375

RESUMO

The spiking activity of the hippocampal place cells plays a key role in producing and sustaining an internalized representation of the ambient space-a cognitive map. These cells do not only exhibit location-specific spiking during navigation, but also may rapidly replay the navigated routs through endogenous dynamics of the hippocampal network. Physiologically, such reactivations are viewed as manifestations of "memory replays" that help to learn new information and to consolidate previously acquired memories by reinforcing synapses in the parahippocampal networks. Below we propose a computational model of these processes that allows assessing the effect of replays on acquiring a robust topological map of the environment and demonstrate that replays may play a key role in stabilizing the hippocampal representation of space.

6.
Nanotechnology ; 30(21): 214006, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30736025

RESUMO

In this work, nanoscale electrical and optical properties of n-GaN nanowires (NWs) containing GaN/AlN multiple quantum discs (MQDs) grown by molecular beam epitaxy are investigated by means of single wire I(V) measurements, electron beam induced current microscopy (EBIC) and cathodoluminescence (CL) analysis. A strong impact of non-intentional AlN and GaN shells on the electrical resistance of individual NWs is put in evidence. The EBIC mappings reveal the presence of two regions with internal electric fields oriented in opposite directions: one in the MQDs region and the other in the adjacent bottom GaN segment. These fields are found to co-exist under zero bias, while under an external bias either one or the other dominates the current collection. In this way EBIC maps allow us to locate the current generation within the wire under different bias conditions and to give the first direct evidence of carrier collection from AlN/GaN MQDs. The NWs have been further investigated by photoluminescence and CL analyses at low temperature. CL mappings show that the near band edge emission of GaN from the bottom part of the NW is blue-shifted due to the presence of the radial shell. In addition, it is observed that CL intensity drops in the central part of the NWs. Comparing the CL and EBIC maps, this decrease of the luminescence intensity is attributed to an efficient charge splitting effect due to the electric fields in the MQDs region and in the GaN base.

7.
PLoS Comput Biol ; 14(9): e1006433, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30226836

RESUMO

The spiking activity of principal cells in mammalian hippocampus encodes an internalized neuronal representation of the ambient space-a cognitive map. Once learned, such a map enables the animal to navigate a given environment for a long period. However, the neuronal substrate that produces this map is transient: the synaptic connections in the hippocampus and in the downstream neuronal networks never cease to form and to deteriorate at a rapid rate. How can the brain maintain a robust, reliable representation of space using a network that constantly changes its architecture? We address this question using a computational framework that allows evaluating the effect produced by the decaying connections between simulated hippocampal neurons on the properties of the cognitive map. Using novel Algebraic Topology techniques, we demonstrate that emergence of stable cognitive maps produced by networks with transient architectures is a generic phenomenon. The model also points out that deterioration of the cognitive map caused by weakening or lost connections between neurons may be compensated by simulating the neuronal activity. Lastly, the model explicates the importance of the complementary learning systems for processing spatial information at different levels of spatiotemporal granularity.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Hipocampo/fisiologia , Modelos Neurológicos , Memória Espacial , Potenciais de Ação , Animais , Mapeamento Encefálico , Simulação por Computador , Neurônios/fisiologia , Distribuição de Poisson , Fatores de Tempo
8.
Beilstein J Nanotechnol ; 9: 2248-2254, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202693

RESUMO

The optimized design of a photonic platform based on a nanowire light emitting diode (LED) and a nanowire photodetector connected with a waveguide is proposed. The light coupling efficiency from the LED to the detector is optimized as a function of the geometrical parameters of the system using the finite difference time domain simulation tool Lumerical. Starting from a design reported in the literature with a coupling efficiency of only 8.7%, we propose an optimized photonic platform with efficiency reaching 65.5%.

9.
Front Comput Neurosci ; 12: 27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740306

RESUMO

Hippocampal cognitive map-a neuronal representation of the spatial environment-is widely discussed in the computational neuroscience literature for decades. However, more recent studies point out that hippocampus plays a major role in producing yet another cognitive framework-the memory space-that incorporates not only spatial, but also non-spatial memories. Unlike the cognitive maps, the memory spaces, broadly understood as "networks of interconnections among the representations of events," have not yet been studied from a theoretical perspective. Here we propose a mathematical approach that allows modeling memory spaces constructively, as epiphenomena of neuronal spiking activity and thus to interlink several important notions of cognitive neurophysiology. First, we suggest that memory spaces have a topological nature-a hypothesis that allows treating both spatial and non-spatial aspects of hippocampal function on equal footing. We then model the hippocampal memory spaces in different environments and demonstrate that the resulting constructions naturally incorporate the corresponding cognitive maps and provide a wider context for interpreting spatial information. Lastly, we propose a formal description of the memory consolidation process that connects memory spaces to the Morris' cognitive schemas-heuristic representations of the acquired memories, used to explain the dynamics of learning and memory consolidation in a given environment. The proposed approach allows evaluating these constructs as the most compact representations of the memory space's structure.

10.
Sci Rep ; 7(1): 3959, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28638123

RESUMO

One of the mysteries of memory is that it can last despite changes in the underlying synaptic architecture. How can we, for example, maintain an internal spatial map of an environment over months or years when the underlying network is full of transient connections? In the following, we propose a computational model for describing the emergence of the hippocampal cognitive map in a network of transient place cell assemblies and demonstrate, using methods of algebraic topology, how such a network can maintain spatial memory over time.


Assuntos
Hipocampo/fisiologia , Modelos Neurológicos , Células de Lugar/fisiologia , Memória Espacial/fisiologia , Animais , Biologia Computacional , Humanos , Rede Nervosa , Plasticidade Neuronal
11.
Chem Sci ; 8(12): 7904-7911, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29568439

RESUMO

The fabrication technologies and the performance of flexible nanowire light emitting diodes (LEDs) are reviewed. We first introduce the existing approaches for flexible LED fabrication, which are dominated by organic technologies, and we briefly discuss the increasing research effort on flexible inorganic LEDs achieved by micro-structuring and transfer of conventional thin films. Then, flexible nanowire-based LEDs are presented and two main fabrication technologies are discussed: direct growth on a flexible substrate and nanowire membrane formation and transfer. The performance of blue, green, white and bi-color flexible LEDs fabricated following the transfer approach is discussed in more detail.

12.
ACS Appl Mater Interfaces ; 8(39): 26198-26206, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27615556

RESUMO

A flexible nitride p-n photodiode is demonstrated. The device consists of a composite nanowire/polymer membrane transferred onto a flexible substrate. The active element for light sensing is a vertical array of core/shell p-n junction nanowires containing InGaN/GaN quantum wells grown by MOVPE. Electron/hole generation and transport in core/shell nanowires are modeled within nonequilibrium Green function formalism showing a good agreement with experimental results. Fully flexible transparent contacts based on a silver nanowire network are used for device fabrication, which allows bending the detector to a few millimeter curvature radius without damage. The detector shows a photoresponse at wavelengths shorter than 430 nm with a peak responsivity of 0.096 A/W at 370 nm under zero bias. The operation speed for a 0.3 × 0.3 cm2 detector patch was tested between 4 Hz and 2 kHz. The -3 dB cutoff was found to be ∼35 Hz, which is faster than the operation speed for typical photoconductive detectors and which is compatible with UV monitoring applications.

13.
Nano Lett ; 16(8): 4895-902, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27414518

RESUMO

Epitaxial growth of GaN nanowires on graphene is demonstrated using molecular beam epitaxy without any catalyst or intermediate layer. Growth is highly selective with respect to silica on which the graphene flakes, grown by chemical vapor deposition, are transferred. The nanowires grow vertically along their c-axis and we observe a unique epitaxial relationship with the ⟨21̅1̅0⟩ directions of the wurtzite GaN lattice parallel to the directions of the carbon zigzag chains. Remarkably, the nanowire density and height decrease with increasing number of graphene layers underneath. We attribute this effect to strain and we propose a model for the nanowire density variation. The GaN nanowires are defect-free and they present good optical properties. This demonstrates that graphene layers transferred on amorphous carrier substrates is a promising alternative to bulk crystalline substrates for the epitaxial growth of high quality GaN nanostructures.

14.
Front Comput Neurosci ; 10: 50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313527

RESUMO

It is widely accepted that the hippocampal place cells' spiking activity produces a cognitive map of space. However, many details of this representation's physiological mechanism remain unknown. For example, it is believed that the place cells exhibiting frequent coactivity form functionally interconnected groups-place cell assemblies-that drive readout neurons in the downstream networks. However, the sheer number of coactive combinations is extremely large, which implies that only a small fraction of them actually gives rise to cell assemblies. The physiological processes responsible for selecting the winning combinations are highly complex and are usually modeled via detailed synaptic and structural plasticity mechanisms. Here we propose an alternative approach that allows modeling the cell assembly network directly, based on a small number of phenomenological selection rules. We then demonstrate that the selected population of place cell assemblies correctly encodes the topology of the environment in biologically plausible time, and may serve as a schematic model of the hippocampal network.

15.
Hippocampus ; 26(10): 1345-53, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27312850

RESUMO

The mammalian hippocampus plays a key role in spatial learning and memory, but the exact nature of the hippocampal representation of space is still being explored. Recently, there has been a fair amount of success in modeling hippocampal spatial maps in rats, assuming a topological perspective on spatial information processing. In this article, we use the topological approach to study the formation of a 3D spatial map in bats, which produces several insights into neurophysiological mechanisms of the hippocampal spatial leaning. First, we demonstrate that, in order to produce accurate maps of the environment, place cell should be organized into functional groups, which can be interpreted as cell assemblies. Second, the model suggests that the readout neurons in these cell assemblies should function as integrators of synaptic inputs, rather than detectors of place cells' coactivity, which allows estimating the integration time window. Lastly, the model suggests that, in contrast with relatively slow moving rats, suppressing θ-precession in bats improves the place cells capacity to encode spatial maps, which is consistent with the experimental observations. © 2016 Wiley Periodicals, Inc.


Assuntos
Quirópteros/fisiologia , Hipocampo/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Percepção Espacial/fisiologia , Potenciais de Ação , Animais , Simulação por Computador , Meio Ambiente , Voo Animal/fisiologia , Ratos , Especificidade da Espécie
16.
Front Comput Neurosci ; 10: 18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014045

RESUMO

Spatial navigation in mammals is based on building a mental representation of their environment-a cognitive map. However, both the nature of this cognitive map and its underpinning in neural structures and activity remains vague. A key difficulty is that these maps are collective, emergent phenomena that cannot be reduced to a simple combination of inputs provided by individual neurons. In this paper we suggest computational frameworks for integrating the spiking signals of individual cells into a spatial map, which we call schemas. We provide examples of four schemas defined by different types of topological relations that may be neurophysiologically encoded in the brain and demonstrate that each schema provides its own large-scale characteristics of the environment-the schema integrals. Moreover, we find that, in all cases, these integrals are learned at a rate which is faster than the rate of complete training of neural networks. Thus, the proposed schema framework differentiates between the cognitive aspect of spatial learning and the physiological aspect at the neural network level.

17.
ACS Appl Mater Interfaces ; 8(1): 240-6, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26652757

RESUMO

We report the study of electrical transport in few-layered CVD-graphene located on nanostructured surfaces in view of its potential application as a transparent contact to optoelectronic devices. Two specific surfaces with a different characteristic feature scale are analyzed: semiconductor micropyramids covered with SiO2 layer and opal structures composed of SiO2 nanospheres. Scanning tunneling microscopy (STM) and scanning electron microscopy (SEM), as well as Raman spectroscopy, have been used to determine graphene/substrate surface profile. The graphene transfer on the opal face centered cubic arrangement of spheres with a diameter of 230 nm leads to graphene corrugation (graphene partially reproduces the opal surface profile). This structure results in a reduction by more than 3 times of the graphene sheet conductivity compared to the conductivity of reference graphene located on a planar SiO2 surface but does not affect the contact resistance to graphene. The graphene transfer onto an organized array of micropyramids results in a graphene suspension. Unlike opal, the graphene suspension on pyramids leads to a reduction of both the contact resistance and the sheet resistance of graphene compared to resistance of the reference graphene/flat SiO2 sample. The sample annealing is favorable to improve the contact resistance to CVD-graphene; however, it leads to the increase of its sheet resistance.

18.
Nanoscale Res Lett ; 10(1): 447, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26577391

RESUMO

We report on the demonstration of substrate-free nanowire/polydimethylsiloxane (PDMS) membrane light-emitting diodes (LEDs). Metal-organic vapour-phase epitaxy (MOVPE)-grown InGaN/GaN core-shell nanowires were encapsulated into PDMS layer. After metal deposition to p-GaN, a thick PDMS cap layer was spin-coated and the membrane was manually peeled from the sapphire substrate, flipped upside down onto a steel holder, and transparent indium tin oxide (ITO) contact to n-GaN was deposited. The fabricated LEDs demonstrate rectifying diode characteristics. For the electroluminescence (EL) measurements, the samples were manually bonded using silver paint. The EL spectra measured at different applied voltages demonstrate a blue shift with the current increase. This shift is explained by the current injection into the InGaN areas of the active region with different average indium content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...