Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36063145

RESUMO

Prefrontal cortical influence over the mesolimbic system - including the nucleus accumbens (NAc) and the ventral tegmental area (VTA) - is implicated in various cognitive processes and behavioral malfunctions. The functional versatility of this system could be explained by an underlying anatomical complexity; however, the detailed characterization of the medial prefrontal cortical (mPFC) innervation of the NAc and VTA is still lacking. Therefore, combining classical retrograde and conditional viral tracing techniques with multiple fluorescent immunohistochemistry, we sought to deliver a precise, cell- and layer-specific anatomical description of the cortico-mesolimbic pathways in mice. We demonstrated that NAc- (mPFCNAc) and VTA-projecting mPFC (mPFCVTA) populations show different laminar distribution (layers 2/3-5a and 5b-6, respectively) and express different molecular markers. Specifically, calbindin and Ntsr1 are specific to mPFCNAc neurons, while mPFCVTA neurons express high levels of Ctip2 and FoxP2, indicating that these populations are mostly separated at the cellular level. We directly tested this with double retrograde tracing and Canine adenovirus type 2-mediated viral labeling and found that there is indeed minimal overlap between the two populations. Furthermore, whole-brain analysis revealed that the projection pattern of these populations is also different throughout the brain. Taken together, we demonstrated that the NAc and the VTA are innervated by two, mostly nonoverlapping mPFC populations with different laminar distribution and molecular profile. These results can contribute to the advancement in our understanding of mesocorticolimbic functions and its disorders in future studies.


Assuntos
Núcleo Accumbens , Área Tegmentar Ventral , Animais , Camundongos , Vias Neurais/metabolismo , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/fisiologia , Área Tegmentar Ventral/fisiologia
2.
Eur J Pharm Biopharm ; 174: 111-130, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35378278

RESUMO

Mycobacterium tuberculosis is an intracellular pathogen and the uptake of the antimycobacterial compounds by host cells is limited. Novel antimycobacterials effective against intracellular bacteria are needed. New N-substituted derivatives of 4-aminosalicylic acid have been designed and evaluated. To achieve intracellular efficacy and selectivity, these compounds were conjugated to tuftsin peptides via oxime or amide bonds. These delivery peptides can target tuftsin- and neuropilin receptor-bearing cells, such as macrophages and various other cells of lung origin. We have demonstrated that the in vitro antimycobacterial activity of the 4-aminosalicylic derivatives against M. tuberculosis H37Rv was preserved in the peptide conjugates. The free drugs were ineffective on infected cells, but the conjugates were active against the intracellular bacteria and have the selectivity on various types of host cells. The intracellular distribution of the carrier peptides was assessed, and the peptides internalize and display mainly in the cytosol in a concentration-dependent manner. The penetration ability of the most promising carrier peptide OT5 was evaluated using Transwell-inserts and spheroids. The pentapeptide exhibited time- and concentration-dependent penetration across the non-contact monolayers. Also, the pentapeptide has a fair penetration rate towards the center of spheroids formed of EBC-1 cells.


Assuntos
Ácido Aminossalicílico , Mycobacterium tuberculosis , Tuftsina , Ácido Aminossalicílico/farmacologia , Antibacterianos/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Excipientes/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/química , Tuftsina/química , Tuftsina/farmacologia
3.
ACS Omega ; 6(50): 34470-34484, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963932

RESUMO

The need for novel drug delivery peptides is an important issue of the modern pharmaceutical research. Here, we test K-rich peptides from plant dehydrin ERD14 (ERD-A, ERD-B, and ERD-C) and the C-terminal CPP-resembling region of S100A4 (S100) using the 5(6)-carboxyfluorescein (Cf) tag at the N-terminus. Via a combined pH-dependent NMR and fluorescence study, we analyze the effect of the Cf conjugation/modification on the structural behavior, separately investigating the (5)-Cf and (6)-Cf forms. Flow cytometry results show that all peptides internalize; however, there is a slight difference between the cellular internalization of (5)- and (6)-Cf-peptides. We indicate the possible importance of residues with an aromatic sidechain and proline. We prove that ERD-A localizes mostly in the cytosol, ERD-B and S100 have partial colocalization with lysosomal staining, and ERD-C mainly localizes within vesicle-like compartments, while the uptake mechanism mainly occurs through energy-dependent paths.

4.
Toxicon ; 200: 78-86, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34252445

RESUMO

Fungi in the Fusarium genus produce trichothecene mycotoxins including deoxynivalenol (DON) and T-2 toxin which may elicit their damaging effects on the gastrointestinal tract following the consumption of contaminated cereal-based foods. The aim of our study was to evaluate the effects of these commonly occurring fusarotoxins alone and in combination using the human, non-cancerous intestinal epithelial cell line HIEC-6. Based on our experimental data, 24 h after treatment with fusarotoxins, hydrogen peroxide levels, intracellular oxidative stress and the amounts of inflammatory interleukins IL-6 and IL-8 significantly increased. Cell membrane localization of the tight junction protein claudin-1 decreased, whereas distribution of occludin remained unchanged. Taken together, the HIEC-6 cell line appears to be a suitable experimental model for monitoring the combined effects of mycotoxins at the cellular level including changes in the redox states of cells.


Assuntos
Micotoxinas , Toxina T-2 , Células Epiteliais , Contaminação de Alimentos/análise , Humanos , Micotoxinas/toxicidade , Estresse Oxidativo , Toxina T-2/toxicidade , Tricotecenos
5.
Nat Neurosci ; 23(5): 625-637, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32284608

RESUMO

Decades of research support the idea that associations between a conditioned stimulus (CS) and an unconditioned stimulus (US) are encoded in the lateral amygdala (LA) during fear learning. However, direct proof for the sources of CS and US information is lacking. Definitive evidence of the LA as the primary site for cue association is also missing. Here, we show that calretinin (Calr)-expressing neurons of the lateral thalamus (Calr+LT neurons) convey the association of fast CS (tone) and US (foot shock) signals upstream from the LA in mice. Calr+LT input shapes a short-latency sensory-evoked activation pattern of the amygdala via both feedforward excitation and inhibition. Optogenetic silencing of Calr+LT input to the LA prevents auditory fear conditioning. Notably, fear conditioning drives plasticity in Calr+LT neurons, which is required for appropriate cue and contextual fear memory retrieval. Collectively, our results demonstrate that Calr+LT neurons provide integrated CS-US representations to the LA that support the formation of aversive memories.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Calreticulina/metabolismo , Sinais (Psicologia) , Memória/fisiologia , Camundongos , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Tálamo/fisiologia
6.
Mediators Inflamm ; 2020: 8880651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424439

RESUMO

Mycotoxin contamination in feedstuffs is a worldwide problem that causes serious health issues both in humans and animals, and it contributes to serious economic losses. Deoxynivalenol (DON) and T-2 toxin (T-2) are major trichothecene mycotoxins and are known to challenge mainly intestinal barrier functions. Polyphenolic rosmarinic acid (RA) appeared to have antioxidant and anti-inflammatory properties in vitro. The aim of this study was to investigate protective effects of RA against DON and T-2 or combined mycotoxin-induced intestinal damage in nontumorigenic porcine cell line, IPEC-J2. It was ascertained that simultaneous treatment of DON and T-2 (DT2: 1 µmol/L DON + 5 nmol/L T - 2) for 48 h and 72 h reduced transepithelial electrical resistance of cell monolayer, which was restored by 50 µmol/L RA application. It was also found that DT2 for 48 h and 72 h could induce oxidative stress and elevate interleukin-6 (IL-6) and interleukin-8 (IL-8) levels significantly, which were alleviated by the administration of RA. DT2 administration contributed to the redistribution of claudin-1; however, occludin membranous localization was not altered by combined mycotoxin treatment. In conclusion, beneficial effect of RA was exerted on DT2-deteriorated cell monolayer integrity and on the perturbated redox status of IPEC-J2 cells.


Assuntos
Cinamatos/farmacologia , Depsídeos/farmacologia , Enterócitos/efeitos dos fármacos , Toxina T-2/administração & dosagem , Tricotecenos/administração & dosagem , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Membrana Celular/metabolismo , Claudina-1/metabolismo , Citocinas/metabolismo , Técnicas In Vitro , Inflamação , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Micotoxinas/metabolismo , Oxirredução , Estresse Oxidativo , Suínos , Ácido Rosmarínico
7.
Nat Neurosci ; 21(11): 1551-1562, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30349105

RESUMO

Sleep cycles consist of rapid alterations between arousal states, including transient perturbation of sleep rhythms, microarousals, and full-blown awake states. Here we demonstrate that the calretinin (CR)-containing neurons in the dorsal medial thalamus (DMT) constitute a key diencephalic node that mediates distinct levels of forebrain arousal. Cell-type-specific activation of DMT/CR+ cells elicited active locomotion lasting for minutes, stereotyped microarousals, or transient disruption of sleep rhythms, depending on the parameters of the stimulation. State transitions could be induced in both slow-wave and rapid eye-movement sleep. The DMT/CR+ cells displayed elevated activity before arousal, received selective subcortical inputs, and innervated several forebrain sites via highly branched axons. Together, these features enable DMT/CR+ cells to summate subcortical arousal information and effectively transfer it as a rapid, synchronous signal to several forebrain regions to modulate the level of arousal.


Assuntos
Nível de Alerta/fisiologia , Locomoção/fisiologia , Neurônios/fisiologia , Prosencéfalo/fisiologia , Tálamo/fisiologia , Animais , Eletroencefalografia , Eletromiografia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...