Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Public Health ; 21(1): 1711, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34544423

RESUMO

BACKGROUND: Responses of subnational government units are crucial in the containment of the spread of pathogens in a country. To mitigate the impact of the COVID-19 pandemic, the Philippine national government through its Inter-Agency Task Force on Emerging Infectious Diseases outlined different quarantine measures wherein each level has a corresponding degree of rigidity from keeping only the essential businesses open to allowing all establishments to operate at a certain capacity. Other measures also involve prohibiting individuals at a certain age bracket from going outside of their homes. The local government units (LGUs)-municipalities and provinces-can adopt any of these measures depending on the extent of the pandemic in their locality. The purpose is to keep the number of infections and mortality at bay while minimizing the economic impact of the pandemic. Some LGUs have demonstrated a remarkable response to the COVID-19 pandemic. The purpose of this study is to identify notable non-pharmaceutical interventions of these outlying LGUs in the country using quantitative methods. METHODS: Data were taken from public databases such as Philippine Department of Health, Philippine Statistics Authority Census, and Google Community Mobility Reports. These are normalized using Z-transform. For each locality, infection and mortality data (dataset Y) were compared to the economic, health, and demographic data (dataset X) using Euclidean metric d=(x-y)2, where x∈X and y∈Y. If a data pair (x,y) exceeds, by two standard deviations, the mean of the Euclidean metric values between the sets X and Y, the pair is assumed to be a 'good' outlier. RESULTS: Our results showed that cluster of cities and provinces in Central Luzon (Region III), CALABARZON (Region IV-A), the National Capital Region (NCR), and Central Visayas (Region VII) are the 'good' outliers with respect to factors such as working population, population density, ICU beds, doctors on quarantine, number of frontliners and gross regional domestic product. Among metropolitan cities, Davao was a 'good' outlier with respect to demographic factors. CONCLUSIONS: Strict border control, early implementation of lockdowns, establishment of quarantine facilities, effective communication to the public, and monitoring efforts were the defining factors that helped these LGUs curtail the harm that was brought by the pandemic. If these policies are to be standardized, it would help any country's preparedness for future health emergencies.


Assuntos
COVID-19 , Pandemias , Controle de Doenças Transmissíveis , Humanos , Governo Local , Filipinas/epidemiologia , SARS-CoV-2
2.
Artigo em Inglês | MEDLINE | ID: mdl-33717797

RESUMO

The number of COVID-19 cases is continuously increasing in different countries including the Philippines. It is estimated that the basic reproduction number of COVID-19 is around 1.5-4 (as of May 2020). The basic reproduction number characterizes the average number of persons that a primary case can directly infect in a population full of susceptible individuals. However, there can be superspreaders that can infect more than this estimated basic reproduction number. In this study, we formulate a conceptual mathematical model on the transmission dynamics of COVID-19 between the frontliners and the general public. We assume that the general public has a reproduction number between 1.5 and 4, and frontliners (e.g. healthcare workers, customer service and retail personnel, food service crews, and transport or delivery workers) have a higher reproduction number. Our simulations show that both the frontliners and the general public should be protected against the disease. Protecting only the frontliners will not result in flattening the epidemic curve. Protecting only the general public may flatten the epidemic curve but the infection risk faced by the frontliners is still high, which may eventually affect their work. The insights from our model remind us of the importance of community effort in controlling the transmission of the disease.

3.
Infect Genet Evol ; 51: 245-254, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28408285

RESUMO

The epigenetic landscape illustrates how cells differentiate through the control of gene regulatory networks. Numerous studies have investigated epigenetic gene regulation but there are limited studies on how the epigenetic landscape and the presence of pathogens influence the evolution of host traits. Here, we formulate a multistable decision-switch model involving several phenotypes with the antagonistic influence of parasitism. As expected, pathogens can drive dominant (common) phenotypes to become inferior through negative frequency-dependent selection. Furthermore, novel predictions of our model show that parasitism can steer the dynamics of phenotype specification from multistable equilibrium convergence to oscillations. This oscillatory behavior could explain pathogen-mediated epimutations and excessive phenotypic plasticity. The Red Queen dynamics also occur in certain parameter space of the model, which demonstrates winnerless cyclic phenotype-switching in hosts and in pathogens. The results of our simulations elucidate the association between the epigenetic and phenotypic fitness landscapes and how parasitism facilitates non-genetic phenotypic diversity.


Assuntos
Epigênese Genética , Células Eucarióticas/parasitologia , Redes Reguladoras de Genes , Interações Hospedeiro-Parasita , Modelos Genéticos , Fenótipo , Animais , Evolução Biológica , Linhagem da Célula , Simulação por Computador , Células Eucarióticas/metabolismo , Característica Quantitativa Herdável , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...