Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 101(3): 496-501, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30677344

RESUMO

Wheat landrace CItr 15026 previously showed adult plant resistance (APR) to the Ug99 stem rust race group in Kenya and seedling resistance to Puccinia graminis f. sp. tritici races QFCSC, TTTTF, and TRTTF. CItr 15026 was crossed to susceptible accessions LMPG-6 and Red Bobs, and 180 double haploid (DH) lines and 140 recombinant inbred lines (RIL), respectively, were developed. The 90K wheat iSelect single-nucleotide polymorphism platform was used to genotype the parents and populations. Parents and 180 DH lines were evaluated in the field in Kenya for three seasons. A major quantitative trait locus (QTL) for APR was consistently detected on chromosome arm 6AS. This QTL was further detected in the RIL population screened in Kenya for one season. Parents, F1, and the two populations were tested as seedlings against races TRTTF and TTTTF. In addition, the DH population was tested against race QFCSC. Goodness-of-fit tests indicated that the TRTTF resistance in CItr 15026 was controlled by two complementary genes whereas the TTTTF and QFCSC resistance was conditioned by one dominant gene. The TRTTF resistance loci mapped to chromosome arms 6AS and 6DS, whereas the TTTTF and QFCSC resistance locus mapped to the same region on 6DS as the TRTTF resistance. The APR identified in CItr 15026 should be useful in developing cultivars with durable stem rust resistance.

2.
Phytopathology ; 107(2): 208-215, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27775500

RESUMO

Wheat landrace PI 177906 has seedling resistance to stem rust caused by Puccinia graminis f. sp. tritici races TTKSK, TTKST, and BCCBC and field resistance to the Ug99 race group. Parents, 140 recombinant inbred lines, and 138 double haploid (DH) lines were evaluated for seedling resistance to races TTKSK and BCCBC. Parents and the DH population were evaluated for field resistance to Ug99 in Kenya. The 90K wheat single nucleotide polymorphism (SNP) genotyping platform was used to genotype the parents and populations. Goodness-of-fit tests indicated that two dominant genes in PI 177906 conditioned seedling resistance to TTKSK. Two major loci for seedling resistance were consistently mapped to the chromosome arms 2BL and 6DS. The BCCBC resistance was mapped to the same location on 2BL as the TTKSK resistance. Using field data from the three seasons, two major QTL were consistently detected at the same regions on 2BL and 6DS. Based on the mapping result, race specificity, and the infection type observed in PI 177906, the TTKSK resistance on 2BL is likely due to Sr28. One SNP marker (KASP_IWB1208) was found to be predictive for the presence of the TTKSK resistance locus on 2BL and Sr28.


Assuntos
Basidiomycota/fisiologia , Resistência à Doença/genética , Doenças das Plantas/imunologia , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética , Genótipo , Doenças das Plantas/microbiologia , Caules de Planta/genética , Caules de Planta/imunologia , Caules de Planta/microbiologia , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Triticum/microbiologia
3.
Theor Appl Genet ; 129(11): 2161-2170, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27544524

RESUMO

KEY MESSAGE: A gene for Ug99 resistance from wheat landrace CItr 4311 was detected on the long arm of chromosome 2B. Wheat landrace CItr 4311 has seedling resistance to stem rust caused by Puccinia graminis f. sp. tritici race TTKSK and field resistance to the Ug99 race group. Parents, F1 seedlings, 121 doubled haploid (DH) lines, and 124 recombinant inbred lines (RILs) developed from a cross between CItr 4311 and the susceptible line LMPG-6 were evaluated for seedling resistance to race TTKSK. Goodness-of-fit tests indicated that a single dominant gene in CItr 4311 conditioned the TTKSK resistance. The 90 K wheat iSelect SNP platform was used to genotype parents and the DH population. The seedling resistance locus was mapped to the chromosome arm 2BL. Parents and the DH population were evaluated for field resistance in Kenya. One major QTL for the field resistance was consistently detected in the same region on 2BL as the seedling resistance. Using KASP assays, five linked SNP markers were used to verify the result in the 124 RIL, 35 wheat accessions, 46 DH lines from the LMPG-6/PI 165194 cross and F1 seedlings, and susceptible bulks derived from crosses between six resistant landraces with LMPG-6. Race specificity, mapping results, and haplotype similarity with lines with Sr9h (Gabo 56, Timstein, and PI 670015), support the hypothesis that the Sr gene in CItr 4311 and the landraces is Sr9h. The KASP assays developed in this study will be useful for pyramiding the TTKSK resistance from CItr 4311 with other Sr genes effective against Ug99.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Basidiomycota , Genes de Plantas , Marcadores Genéticos , Genótipo , Haplótipos , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Plântula/microbiologia , Triticum/microbiologia
4.
Phytopathology ; 106(10): 1170-1176, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27349737

RESUMO

Root rot caused by Rhizoctonia spp. is an economically important soilborne disease of spring-planted wheat in growing regions of the Pacific Northwest (PNW). The main method of controlling the disease currently is through tillage, which deters farmers from adopting the benefits of minimal tillage. Genetic resistance to this disease would provide an economic and environmentally sustainable resource for farmers. In this study, a collection of synthetic-derived genotypes was screened in high-inoculum and low-inoculum field environments. Six genotypes were found to have varying levels of resistance and tolerance to Rhizoctonia root rot. One of the lines, SPBC-3104 ('Vorobey'), exhibited good tolerance in the field and was crossed to susceptible PNW-adapted 'Louise' to examine the inheritance of the trait. A population of 190 BC1-derived recombinant inbred lines was assessed in two field green bridge environments and in soils artificially infested with Rhizoctonia solani AG8. Genotyping by sequencing and composite interval mapping identified three quantitative trait loci (QTL) controlling tolerance. Beneficial alleles of all three QTL were contributed by the synthetic-derived genotype SPCB-3104.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Resistência à Doença/genética , Doenças das Plantas/prevenção & controle , Rhizoctonia/fisiologia , Triticum/genética , Alelos , Meio Ambiente , Genótipo , Técnicas de Genotipagem , Noroeste dos Estados Unidos , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Análise de Sequência de DNA , Triticum/imunologia , Triticum/microbiologia
5.
Plant Dis ; 100(2): 331-336, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30694146

RESUMO

Wheat breeders worldwide are seeking new sources of resistance to Puccinia graminis f. sp. tritici race TTKSK. To prioritize field-resistant landraces for follow-up genetic studies to test for the presence of new resistance genes, seedling response to P. graminis f. sp. tritici race TTKSK, molecular markers linked to specific Sr genes, segregation ratios among progeny from crosses, and bulked segregant analyses (BSA) were used. In total, 33 spring wheat landraces with seedling resistance to P. graminis f. sp. tritici race TTKSK were crossed to a susceptible genotype, LMPG-6. The segregation ratios of stem rust reactions in F2 seedlings fit a single dominant gene model in 31 populations and progeny from two crosses gave ambiguous results. Using the 90K wheat single-nucleotide polymorphism genotyping platform, BSA showed that the seedling resistance in 29 accessions is probably controlled by loci on chromosome 2BL. For the three remaining accessions, BSA revealed that the seedling resistance is most likely controlled by previously unreported genes. For confirmation, two populations were advanced to the F2:3 and screened against P. graminis f. sp. tritici race TTKSK. Segregation of the F2:3 families fit a 1:2:1 ratio for a single dominant gene. Using the F2:3 families, BSA located the TTKSK locus on chromosome 6DS to the same location as Sr42.

6.
Theor Appl Genet ; 128(4): 605-12, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25599859

RESUMO

KEY MESSAGE: A new gene for Ug99 resistance from wheat landrace PI 374670 was detected on the long arm of chromosome 7A. Wheat landrace PI 374670 has seedling and field resistance to stem rust caused by Puccinia graminis f. sp tritici Eriks. & E. Henn (Pgt) race TTKSK. To elucidate the inheritance of resistance, 216 BC1F2 families, 192 double haploid (DH) lines, and 185 recombinant inbred lines (RILs) were developed by crossing PI 374670 and the susceptible line LMPG-6. The parents and progeny were evaluated for seedling resistance to Pgt races TTKSK, MCCFC, and TPMKC. The DH lines were tested in field stem rust nurseries in Kenya and Ethiopia. The DH lines were genotyped with the 90K wheat iSelect SNP genotyping platform. Goodness-of-fit tests indicated that a single dominant gene in PI 374670 conditioned seedling resistance to the three Pgt races. The seedling resistance locus mapped to the long arm of chromosome 7A and this result was verified in the RIL population screened with the flanking SNP markers using KASP assays. In the same region, a major QTL for field resistance was detected in a 7.7 cM interval and explained 34-54 and 29-36% of the variation in Kenya and Ethiopia, respectively. Results from tests with specific Pgt races and the csIH81 marker showed that the resistance was not due to Sr22. Thus, a new stem rust resistance gene or allele, either closely linked or allelic to Sr15, is responsible for the seedling and field resistance of PI 374670 to Ug99.


Assuntos
Basidiomycota , Mapeamento Cromossômico , Resistência à Doença/genética , Triticum/genética , Cruzamento , Cromossomos de Plantas , Genes Dominantes , Genes de Plantas , Marcadores Genéticos , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/microbiologia
7.
Plant Dis ; 96(11): 1670-1674, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30727462

RESUMO

Camelina (Camelina sativa) plants with symptoms of downy mildew were obtained from three different locations in Washington State. Based on polymerase chain reaction (PCR) and sequencing of the internal transcribed spacer (ITS)1-5.8S-ITS2 region, the causal pathogen was identified as Hyaloperonospora camelinae. The PCR primers consistently amplified 699-bp bands from the infected plants but not from the asymptomatic plants. A comparison of the sequences with those in GenBank revealed 100% sequence similarity to H. camelinae. Growth and development of the H. camelinae was observed in different tissues using light microscopy and scanning electron microscopy (SEM). Light microscopic observation revealed the presence of oospores in the infected leaves and SEM revealed the presence of conidia and conidiophores on the seed surface. To determine whether H. camelinae is a seed-transmitted pathogen, seed collected from infected plants were planted in Sunshine professional growing mix maintained in a growth chamber. Disease symptoms were observed in 96% of the seedlings compared with 3% of the seedlings grown from seed from asymptomatic plants, which indicates that H. camelinae is a seed-transmitted pathogen. Seed treated with mefenoxam, a fungicide specific for Oomycetes, significantly reduced the incidence of the disease.

8.
Plant Dis ; 95(3): 304-310, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30743538

RESUMO

Rhizoctonia root rot, caused by Rhizoctonia solani AG-8 and R. oryzae, is considered one of the main deterrents for farmers to adopt reduced-tillage systems in the Pacific Northwest. Because of the wide host range of Rhizoctonia spp., herbicide application before planting to control weeds and volunteer plants is the main management strategy for this disease. To determine the effect of timing of glyphosate applications on the severity of Rhizoctonia root rot of barley, field experiments were conducted in 2007, 2008, and 2009 in a field naturally infested with a high level of both R. solani and R. oryzae. Crop volunteer plants and weeds were allowed to grow over the winter and plots were sprayed with glyphosate at 42, 28, 14, 7, and 2 days prior to planting. As the herbicide application interval increased, there were significant increases in shoot length, length of the first true leaf, and number of healthy seminal roots and a decrease in disease severity. Yield and the number of seminal roots did not show a response to herbicide application interval in most years. The activity of R. solani, as measured by toothpick bioassay and real-time polymerase chain reaction, declined over time in all treatments after planting barley. The herbicide application interval required to meet 80 and 90% of the maximum response (asymptote) for all plant and disease measurements ranged from 11 to 27 days and 13 to 37 days, respectively. These times are the minimum herbicide application intervals required to reduce disease severity in the following crop.

9.
Br Poult Sci ; 36(3): 371-83, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-7583371

RESUMO

1. Using a modification of the method of New (1955) explanted blastoderms of the Japanese quail were cultured for up to 72 h, and the role of ions in the formation of sub-embryonic fluid (SEF) investigated. 2. Culture media deficient in either sodium or chloride ions reduced the volume of SEF secreted by up to a quarter. Ionic composition of the fluid was little altered, and sodium was transported against a concentration gradient. 3. Amiloride, an inhibitor of Na+/H+ exchange, reduced SEF production by half, whereas ionic composition and osmolality of the fluid was unchanged. 4. Likewise, acetazolamide, an inhibitor of carbonic anhydrase, reduced SEF production by the blastoderm, and left the ionic composition and osmolality of the fluid unaltered. 5. Neither furosemide or 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid at the concentrations used changed the volume of SEF formed or its ionic composition. 6. It is concluded that the secretion of SEF is dependent upon the active transport of sodium across the blastoderm; an amiloride-sensitive Na+/H+ exchanger and carbon dioxide hydration catalysed by carbonic anhydrase are also involved. 7. Furthermore, it is proposed that fluid transport across the blastoderm is the result of local osmotic gradients, not from a sub-embryonic fluid hyperosmotic to albumen, as has been suggested previously.


Assuntos
Blastoderma/fisiologia , Líquidos Corporais/fisiologia , Transporte de Íons/fisiologia , Acetazolamida/farmacologia , Análise de Variância , Animais , Blastoderma/efeitos dos fármacos , Inibidores da Anidrase Carbônica/farmacologia , Coturnix , Meios de Cultura , Técnicas de Cultura , Sódio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...