Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(5): e37004, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22623968

RESUMO

Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50-100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Diferenciação Celular/fisiologia , Diabetes Mellitus Tipo 1/terapia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Células Secretoras de Insulina/citologia , Análise de Variância , Animais , Criopreservação/métodos , Células-Tronco Embrionárias/fisiologia , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos SCID , Estreptozocina
2.
Endocrinology ; 147(5): 2183-96, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16469808

RESUMO

Loss of brain melanocortin receptors (Mc3rKO and Mc4rKO) causes increased adiposity and exacerbates diet-induced obesity (DIO). Little is known about how Mc3r or Mc4r genotype, diet, and obesity affect insulin sensitivity. Insulin resistance, assessed by insulin and glucose tolerance tests, Ser(307) phosphorylation of insulin receptor substrate 1, and activation of protein kinase B, was examined in control and DIO wild-type (WT), Mc3rKO and Mc4rKO C57BL/6J mice. Mc4rKO mice were hyperphagic and had increased metabolic efficiency (weight gain per kilojoule consumed) relative to WT; both parameters increased further on high-fat diet. Obesity of Mc3rKO was more dependent on fat intake, involving increased metabolic efficiency. Fat mass of DIO Mc3rKO and Mc4rKO was similar, although Mc4rKO gained weight more rapidly. Mc4rKO develop hepatic insulin resistance and severe hepatic steatosis with obesity, independent of diet. DIO caused further deterioration of insulin action in Mc4rKO of either sex and, in male Mc3rKO, compared with controls, associated with increased fasting insulin, severe glucose intolerance, and reduced insulin signaling in muscle and adipose tissue. DIO female Mc3rKO exhibited very modest perturbations in glucose metabolism and insulin sensitivity. Consistent with previous data suggesting impaired fat oxidation, both Mc3rKO and Mc4rKO had reduced muscle oxidative metabolism, a risk factor for weight gain and insulin resistance. Energy expenditure was, however, increased in Mc4rKO compared with Mc3rKO and controls, perhaps due to hyperphagia and metabolic costs associated with rapid growth. In summary, DIO affects insulin sensitivity more severely in Mc4rKO compared with Mc3rKO, perhaps due to a more positive energy balance.


Assuntos
Dieta , Receptor Tipo 3 de Melanocortina/fisiologia , Receptor Tipo 4 de Melanocortina/fisiologia , Tecido Adiposo/metabolismo , Ração Animal , Animais , Calorimetria , Proliferação de Células , Metabolismo Energético , Ácidos Graxos/metabolismo , Feminino , Genótipo , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Músculo Esquelético/metabolismo , Obesidade , Oxigênio/metabolismo , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/metabolismo , Receptor de Insulina/metabolismo , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/genética , Análise de Regressão , Fatores de Risco , Sensibilidade e Especificidade , Serina/química , Fatores Sexuais , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...