Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
BBA Clin ; 6: 49-68, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27413694

RESUMO

Senile cataract is a clouding of the lens in the aging eye leading to a decrease in vision. Symptoms may include faded colors, blurry vision, halos around light, trouble with bright lights, and trouble seeing at night. This may result in trouble driving, reading, or recognizing faces. Cataracts are the cause of half of blindness and 33% of visual impairment worldwide. Cataracts result from the deposition of aggregated proteins in the eye lens and lens fiber cells plasma membrane damage which causes clouding of the lens, light scattering, and obstruction of vision. ROS induced damage in the lens cell may consist of oxidation of proteins, DNA damage and/or lipid peroxidation, all of which have been implicated in cataractogenesis. The inner eye pressure (also called intraocular pressure or IOP) rises because the correct amount of fluid can't drain out of the eye. With primary open-angle glaucoma, the entrances to the drainage canals are clear and should be working correctly. The clogging problem occurs further inside the drainage canals, similar to a clogged pipe below the drain in a sink. The excessive oxidative damage is a major factor of the ocular diseases because the mitochondrial respiratory chain in mitochondria of the vital cells is a significant source of the damaging reactive oxygen species superoxide and hydrogen peroxide. However, despite the clinical importance of mitochondrial oxidative damage, antioxidants have been of limited therapeutic success. This may be because the antioxidants are not selectively taken up by mitochondria, but instead are dispersed throughout the body, ocular tissues and fluids' moieties. This work is an attempt to integrate how mitochondrial reactive oxygen species (ROS) are altered in the aging eye, along with those protective and repair therapeutic systems believed to regulate ROS levels in ocular tissues and how damage to these systems contributes to age-onset eye disease and cataract formation. Mitochondria-targeted antioxidants might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo. The authors developed and patented the new ophthalmic compositions including N-acetylcarnosine acting as a prodrug of naturally targeted to mitochondria l-carnosine endowed with pluripotent antioxidant activities, combined with mitochondria-targeted rechargeable antioxidant (either MitoVit E, Mito Q or SkQs) as a potent medicine to treat ocular diseases. Such specificity is explained by the fact that developed compositions might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo and outside mitochondria in the cellular and tissue structures of the lens and eye compartments. Mitochondrial targeting of compounds with universal types of antioxidant activity represents a promising approach for treating a number of ROS-related ocular diseases of the aging eye and can be implicated in the management of cataracts and primary open-angle glaucoma.

2.
Recent Pat Drug Deliv Formul ; 10(2): 82-129, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26084629

RESUMO

BACKGROUND: Visual impairment broadly impacts the ability of affected people to maintain their function and to remain independent during their daily occupations as they grow older. Visual impairment affects survival of older patients, quality of life, can affect a person's self-ranking of health, may be associated with social and functional decline, use of community support services, depression, falls, nursing home placement, and increased mortality. It has been hypothesized that senile cataract may serve as a marker for generalised tissue aging, since structural changes occurring in the proteins of the lens during cataract formation are similar to those which occur elsewhere as part of the aging process. The published analysis revealed a strong age-dependent relationship between undergoing cataract surgery and subsequent mortality. METHODS: Nuclear opacity, particularly severe nuclear opacity, and mixed opacities with nuclear were significant predictors of mortality independent of body mass index, comorbid conditions, smoking, age, race, and sex. The lens opacity status is considered as an independent predictor of 2-year mortality, an association that could not be explained by potential confounders. Telomeres have become important biomarkers for aging as well as for oxidative stress-related disease. The lens epithelium is especially vulnerable to oxidative stress. Oxidative damage to the cuboidal epithelial cells on the anterior surface of the lens mediated by reactive oxygen species and phospholipid hydroperoxides can precede and contribute to human lens cataract formation. The erosion and shortening of telomeres in human lens epithelial cells in the lack of telomerase activity has been recognized as a primary cause of premature lens senescence phenotype that trigger human cataractogenesis. In this study we aimed to be focused on research defining the mechanisms that underlie linkages among telomere attrition in human lens epithelial cells associated with oxidative stress, biology of the lens response to oxidative damages, aging and health, cataract versus neuroendocrine regulation and disease. The cumulative results demonstrate that carnosine, released ophthalmically from the patented 1% Nacetylcarnosine prodrug lubricant eye drops, at physiological concentration might remarkably reduce the rate of telomere shortening in the lens cells subjected to oxidative stress in the lack of efficient antioxidant lens protection. Carnosine promotes the protection of normal cells from acquiring phenotypic characteristics of cellular senescence. The data of visual functions (visual acuity, glare sensitivity) in older adult subjects and older subjects with cataract treated with 1% N-acetylcarnosine lubricant eye drops showed significant improvement as compared, by contrast with the control group which showed generally no improvement in visual functions, with no difference from baseline in visual acuity and glare sensitivity readings. RESULTS: N-acetylcarnosine derived from the lubricant eye drops may be transported into the hypothalamic tuberomammillary nucleus (TMN) histamine neurons and gradually hydrolyzed. The resulting L-histidine may subsequently be converted into histamine, which could be responsible for the effects of carnosine on neurotransmission and hormone-like antiaging and anti-cataract physiological function. CONCLUSION: The research utilizing the N-acetylcarnosine lubricant eye drops powerful therapeutic platform provides the findings related to the intraocular uptake exposure sources as well as a timing dosage and duration systemic absorption of said preparation from the conjunctional sac reaching the hypothalamus with activities transfer into the hypothalamic-neuroendocrine pathways affecting across the hypothalamus metabolic pathway the telomere biology and cataract disease occurrence, reversal and prevention and the average expected lifespan of an individual. Such findings can be translated into clinical practice and may provide a basis for personalized cataract disease and aging prevention and treatment approaches.


Assuntos
Antioxidantes/administração & dosagem , Carnosina/análogos & derivados , Catarata/prevenção & controle , Células Epiteliais/efeitos dos fármacos , Cristalino/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Homeostase do Telômero/efeitos dos fármacos , Administração Oftálmica , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Antioxidantes/efeitos adversos , Antioxidantes/química , Antioxidantes/farmacocinética , Carnosina/administração & dosagem , Carnosina/efeitos adversos , Carnosina/química , Carnosina/farmacocinética , Catarata/genética , Catarata/metabolismo , Catarata/patologia , Córnea/metabolismo , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Cristalino/metabolismo , Cristalino/patologia , Absorção Ocular , Soluções Oftálmicas , Solubilidade
3.
Am J Ther ; 23(1): e98-117, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-21048433

RESUMO

The aging eye appears to be at considerable risk from oxidative stress. A great deal of research indicates that dysfunctional mitochondria are the primary site of reactive oxygen species (ROS). More than 95% of O2 produced during normal metabolism is generated by the electron transport chain in the inner mitochondrial membrane. Mitochondria are also the major target of ROS. Cataract formation, the opacification of the eye lens, is one of the leading causes of human blindness worldwide, accounting for 47.8% of all causes of blindness. Cataracts result from the deposition of aggregated proteins in the eye lens and lens fiber cell plasma membrane damage, which causes clouding of the lens, light scattering, and obstruction of vision. ROS-induced damage in the lens cell may consist of oxidation of proteins, DNA damage, and/or lipid peroxidation, all of which have been implicated in cataractogenesis. This article is an attempt to integrate how mitochondrial ROS are altered in the aging eye along with those protective and repair therapeutic systems believed to regulate ROS levels in ocular tissues and how damage to these systems contributes to age-onset eye disease and cataract formation. Mitochondria-targeted antioxidants might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo. As a result of the combination of weak metal chelating, OH and lipid peroxyl radicals scavenging, reducing activities to liberated fatty acid, and phospholipid hydroperoxides, carnosine and carcinine appear to be physiological antioxidants able to efficiently protect the lipid phase of biologic membranes and aqueous environments and act as the antiapoptotic natural drug compounds The authors developed and patented the new ophthalmic compositions, including N-acetylcarnosine, acting as a prodrug of naturally targeted to mitochondria L-carnosine endowed with pluripotent antioxidant activities combined with mitochondria-targeted rechargeable antioxidant (either MitoVit E, Mito Q, or SkQs) as a potent medicine to treat ocular diseases. Such specificity is explained by the fact that developed compositions might be used to effectively prevent ROS-induced oxidation of lipids and proteins in the inner mitochondrial membrane in vivo and outside mitochondria in the cellular and tissue structures of the lens and eye compartments. Mitochondrial targeting of compounds with universal types of antioxidant activity represents a promising approach for treating a number of ROS-related ocular diseases of the aging eye and can be implicated in the management of cataracts.


Assuntos
Antioxidantes/farmacologia , Catarata/etiologia , Cristalino/fisiologia , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/uso terapêutico , Apoptose , Cardiolipinas/metabolismo , Catarata/tratamento farmacológico , Citocromos c/metabolismo , Humanos , Hidroquinonas/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/fisiologia , Chaperonas Moleculares/fisiologia , Oxirredução , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Tiorredoxinas/fisiologia
4.
Expert Opin Ther Pat ; 25(11): 1319-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26372004

RESUMO

INTRODUCTION: Diabetes mellitus is the seventh-leading cause of death in the US and diabetic complications are interlaced with specific diverse microvascular and macrovascular pathologies resulting from hyperglycemia. The society should expand prowess and patenting of biotechnology to cure disease and complications. AREAS COVERED: The work summarizes biological activities of patented carnosine mimetics resistant in formulations to enzymatic hydrolysis with human carnosinases that are acting as a universal form of antioxidant, deglycating and transglycating agents that inhibit sugar-mediated protein crosslinking, chelate or inactivate a number of transition metal ions (including ferrous and copper ions), possess lipid peroxidase type of activity and protection of antioxidant enzymes from inactivation. L-Carnosine released systemically from N-acetylcarnosine lubricant eye drops or from skeletal muscle during exercise is transported into hypothalamic tuberomammillary nucleus-histamine neurons and hydrolyzed. The resulting L-histidine is subsequently converted into histamine acting as metabolic fuel feeding for the hypothalamic histaminergic system. This mechanism is responsible for the effects of L-carnosine on autonomic neurotransmission and physiological function of pancreas, stimulating in vivo regeneration of insulin-producing ß cells. EXPERT OPINION: Therapeutic benefits for imidazole-containing antioxidants (nutraceutical non-hydrolyzed carnosine, carcinine, D-carnosine, ophthalmic prodrug N-acetylcarnosine, leucyl-histidylhydrazide and patented formulations thereof) are an essential part of diabetes treatment.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Doenças Metabólicas/tratamento farmacológico , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Diabetes Mellitus/fisiopatologia , Desenho de Fármacos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Hipoglicemiantes/química , Imidazóis/química , Imidazóis/farmacologia , Doenças Metabólicas/fisiopatologia , Patentes como Assunto , Peptídeos/química , Peptídeos/farmacologia , Estados Unidos
5.
J Biomed Mater Res A ; 103(12): 3993-4023, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26034007

RESUMO

Accumulated data indicate that wound-care products should have a composition equivalent to that of the skin: a combination of particular growth factors and extracellular matrix (ECM) proteins endogenous to the skin, together with viable epithelial cells, fibroblasts, and mesenchymal stem cells (MSCs). Strategies consisting of bioengineered dressings and cell-based products have emerged for widespread clinical use; however, their performance is not optimal because chronic wounds persist as a serious unmet medical need. Telomerase, the ribonucleoprotein complex that adds telomeric repeats to the ends of chromosomes, is responsible for telomere maintenance, and its expression is associated with cell immortalization and, in certain cases, cancerogenesis. Telomerase contains a catalytic subunit, the telomerase reverse transcriptase (hTERT). Introduction of TERT into human cells extends both their lifespan and their telomeres to lengths typical of young cells. The regulation of TERT involves transcriptional and posttranscriptional molecular biology mechanisms. The manipulation, regulation of telomerase is multifactorial in mammalian cells, involving overall telomerase gene expression, post-translational protein-protein interactions, and protein phosphorylation. Reactive oxygen species (ROS) have been implicated in aging, apoptosis, and necrosis of cells in numerous diseases. Upon production of high levels of ROS from exogenous or endogenous generators, the redox balance is perturbed and cells are shifted into a state of oxidative stress, which subsequently leads to modifications of intracellular proteins and membrane lipid peroxidation and to direct DNA damage. When the oxidative stress is severe, survival of the cell is dependent on the repair or replacement of damaged molecules, which can result in induction of apoptosis in the injured with ROS cells. ROS-mediated oxidative stress induces the depletion of hTERT from the nucleus via export through the nuclear pores. Nuclear export is initiated by ROS-induced phosphorylation of tyrosine 707 within hTERT by the Src kinase family. It might be presumed that protection of mitochondria against oxidative stress is an important telomere length-independent function for telomerase in cell survival. Biotechnology companies are focused on development of therapeutic telomerase vaccines, telomerase inhibitors, and telomerase promoter-driven cell killing in oncology, have a telomerase antagonist in late preclinical studies. Anti-aging medicine-oriented groups have intervened on the market with products working on telomerase activation for a broad range of degenerative diseases in which replicative senescence or telomere dysfunction may play an important role. Since oxidative damage has been shown to shorten telomeres in tissue culture models, the adequate topical, transdermal, or systemic administration of antioxidants (such as, patented ocular administration of 1% N-acetylcarnosine lubricant eye drops in the treatment of cataracts) may be beneficial at preserving telomere lengths and delaying the onset or in treatment of disease in susceptible individuals. Therapeutic strategies toward controlled transient activation of telomerase are targeted to cells and replicative potential in cell-based therapies, tissue engineering and regenerative medicine.


Assuntos
Senescência Celular , Telomerase/metabolismo , Engenharia Tecidual/métodos , Animais , Sequência de Bases , Terapia Baseada em Transplante de Células e Tecidos/métodos , Ativação Enzimática , Humanos , Modelos Moleculares , Medicina Regenerativa/métodos , Telomerase/análise , Telômero/química , Telômero/metabolismo , Telômero/ultraestrutura , Encurtamento do Telômero
7.
Cell Biochem Biophys ; 71(3): 1425-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25427889

RESUMO

Diabetic neuropathy (DN) represents the main cause of morbidity and mortality among diabetic patients. Clinical data support the conclusion that the severity of DN is related to the frequency and duration of hyperglycemic periods. The presented experimental and clinical evidences propose that changes in cellular function resulting in oxidative stress act as a leading factor in the development and progression of DN. Hyperglycemia- and dyslipidemia-driven oxidative stress is a major contributor, enhanced by advanced glycation end product (AGE) formation and polyol pathway activation. There are several polymorphous pathways that lead to oxidative stress in the peripheral nervous system in chronic hyperglycemia. This article demonstrates the origin of oxidative stress derived from glycation reactions and genetic variations within the antioxidant genes which could be implicated in the pathogenesis of DN. In the diabetic state, unchecked superoxide accumulation and resultant increases in polyol pathway activity, AGEs accumulation, protein kinase C activity, and hexosamine flux trigger a feed-forward system of progressive cellular dysfunction. In nerve, this confluence of metabolic and vascular disturbances leads to impaired neural function and loss of neurotrophic support, and over the long term, can mediate apoptosis of neurons and Schwann cells, the glial cells of the peripheral nervous system. In this article, we consider AGE-mediated reactive oxygen species (ROS) generation as a pathogenesis factor in the development of DN. It is likely that oxidative modification of proteins and other biomolecules might be the consequence of local generation of superoxide on the interaction of the residues of L-lysine (and probably other amino acids) with α-ketoaldehydes. This phenomenon of non-enzymatic superoxide generation might be an element of autocatalytic intensification of pathophysiological action of carbonyl stress. Glyoxal and methylglyoxal formed during metabolic pathway are detoxified by the glyoxalase system with reduced glutathione as co-factor. The concentration of reduced glutathione may be decreased by oxidative stress and by decreased in situ glutathione reductase activity in diabetes mellitus. Genetic variations within the antioxidant genes therefore could be implicated in the pathogenesis of DN. In this work, the supporting data about the association between the -262T > C polymorphism of the catalase (CAT) gene and DN were shown. The -262TT genotype of the CAT gene was significantly associated with higher erythrocyte catalase activity in blood of DN patients compared to the -262CC genotype (17.8 ± 2.7 × 10(4) IU/g Hb vs. 13.5 ± 3.2 × 10(4) IU/g Hb, P = 0.0022). The role of these factors in the development of diabetic complications and the prospective prevention of DN by supplementation in formulations of transglycating imidazole-containing peptide-based antioxidants (non-hydrolyzed carnosine, carcinine, n-acetylcarcinine) scavenging ROS in the glycation reaction, modifying the activity of enzymic and non-enzymic antioxidant defenses that participate in metabolic processes with ability of controlling at transcriptional levels the differential expression of several genes encoding antioxidant enzymes inherent to DN in Type I Diabetic patients, now deserve investigation.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/genética , Predisposição Genética para Doença/genética , Estresse Oxidativo , Polimorfismo Genético , Espécies Reativas de Oxigênio/metabolismo , Adulto , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/enzimologia , Neuropatias Diabéticas/metabolismo , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Lisina/metabolismo , Masculino , Superóxidos/metabolismo , Adulto Jovem
8.
Recent Pat Drug Deliv Formul ; 9(1): 1-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25524476

RESUMO

Hypothalamic releasing and inhibiting hormones are major neuroendocrine regulators of human body metabolism being driven directly to the anterior pituitary gland via hypothalamic-hypophyseal portal veins. The alternative physiological or therapeutic interventions utilizing the pharmaco-nutritional boost of imidazole-containing dipeptides (non-hydrolized oral form of carnosine, carcinine, N-acetylcarnosine lubricant eye drops) can maintain health, enhance physical exercise performance and prevent ageing. Carnosine (ß-alanyl-L-histidine) is synthesized in mammalian skeletal muscle. There is an evidence that the release of carnosine from the skeletal muscle sarcomeres moieties during physical exercise affects autonomic neurotransmission and physiological functions. Carnosine released from skeletal muscle during exercise acts as a powerful afferent physiological signaling stimulus for hypothalamus, may be transported into the hypothalamic tuberomammillary nucleus (TMN), specifically to TMN-histamine neurons and hydrolyzed herewith via activities of carnosine-degrading enzyme (carnosinase 2) localized in situ. Through the colocalized enzymatic activity of Histidine decarboxylase in the histaminergic neurons, the resulting L-histidine may subsequently be converted into histamine, which could be responsible for the effects of carnosine on neurotransmission and physiological function. Carnosine and its imidazole-containing dipeptide derivatives are renowned for their anti-aging, antioxidant, membrane protective, metal ion chelating, buffering, anti-glycation/ transglycating activities used to prevent and treat a spectrum of age-related and metabolic diseases, such as neurodegenerative disease, sight threatening eye diseases, Diabetes mellitus and its complications, cancers and other disorders due to their wide spectrum biological activities. The precursor of carnosine (and related imidazole containing compounds) synthesis in skeletal muscles beta-alanine is used as the oral supplement by athletes to achieve the fine sporting art results due to the buffering activities of carnosine and its related imidazole- containing compounds which contribute to the maintenance of the acid-base balance in the acting muscles. This work originally emphasizes that overall data indicate the signaling activities of carnosine in skeletal and cardiac muscles switching on the mechanisms of exercise-induced telomere protection and point to the stress response and growth/cellular proliferation pathways as high-priority candidates for the ongoing studies and therapeutic concepts. The therapeutic interventions utilizing the specific oral formulation (Can-C Plus), timing dosing and pharmaco-nutritional boost of imidazolecontaining dipeptides can maintain health, enhance physical exercise performance and prevent aging. The patented therapeutic concept protects the existence of the interesting physiological major activities, better controls and therapeutic treatments for aging/age-related disorders (including age-related loss of muscle mass and muscle function) using carnosine dipeptide for cellular rejuvenation and manipulating telomeres and enzyme telomerase activity that may reduce some of the physiological declines that accompany aging.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/administração & dosagem , Encéfalo/metabolismo , Carnosina/administração & dosagem , Proliferação de Células/fisiologia , Músculo Esquelético/metabolismo , Administração Oral , Envelhecimento/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Carnosina/química , Carnosina/metabolismo , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica , Dipeptídeos/administração & dosagem , Dipeptídeos/química , Dipeptídeos/metabolismo , Nível de Saúde , Humanos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Músculo Esquelético/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo
9.
J Basic Clin Physiol Pharmacol ; 26(2): 115-40, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25153587

RESUMO

It has been documented that telomere-associated cellular senescence may contribute to certain age-related disorders, and telomere length (TL) may be an informative biomarker of healthy aging. Hormone-brain-aging behavior-modulated telomere dynamics and changes in telomerase activity are consistent elements of cellular alterations associated with changes in proliferative state, and these processes are consequently considered as the new therapeutic drug targets for physiological control with advanced drug delivery and nutritional formulations. We raise and support a therapeutic concept of using nonhydrolyzed forms of naturally occurring neuron-specific imidazole dipeptide-based compounds carnosine and carcinine, making it clinically possible that slowing down the rate of telomere shortening could slow down the human aging process in specific tissues where proliferative senescence is known to occur, with the demonstrated evidence of telomere shortening that appeared to be a hallmark of oxidative stress and disease. Carnosine released from skeletal muscle during exercise may be transported into the hypothalamic tuberomammillary nucleus (TMN) histamine neurons and hydrolyzed. The resulting L-histidine may subsequently be converted into histamine, which could be responsible for the effects of carnosine on neurotransmission and hormone-like antiaging physiological function. The preliminary longitudinal studies of elderly individuals suggest that longer telomeres are associated with better survival, and an advanced oral nutritional support with nonhydrolyzed carnosine (or carcinine and patented compositions thereof) is a useful therapeutic tool for a critical TL maintenance that may fundamentally be applied in the treatment of age-related sight-threatening eye disorders, prolonged life expectancy, increased survival and chronological age of an organism in health control, smoking behavior, and disease. "Our pleasures were simple-they included survival." -Dwight D. Eisenhower, 34th President of the United States, 1953-1961.


Assuntos
Envelhecimento/efeitos dos fármacos , Dipeptídeos/farmacologia , Imidazóis/farmacologia , Telômero/metabolismo , Idoso , Envelhecimento/fisiologia , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Dipeptídeos/química , Humanos , Imidazóis/química , Terapia de Alvo Molecular , Estresse Oxidativo/fisiologia , Telomerase/metabolismo , Encurtamento do Telômero/efeitos dos fármacos , Encurtamento do Telômero/fisiologia
10.
Curr Pharm Biotechnol ; 15(8): 738-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25158972

RESUMO

The activities of carnosine (ß-alanyl-L-histidine), carnosine imidazole containing dipeptide based derivatives (N-acetylcarnosine, carcinine, homocarnosine) and a carnosine degrading enzyme (serum carnosinase (EC 3.4.13.20); [human tissue carnosinase (EC 3.4.13.3), CN2 (CNDP2)] ) activities have been discrepantly linked to neuropathophysiological processes. Approximately 82% of the U.S. population will experience normal age-related cognitive decline, as compared to the precipitous losses that are associated with dementing disorders. Interventions designed to promote health and function through everyday activity and specific pharmaco-nutritional therapeutic treatments may enhance brain plasticity in key regions that support executive function. Cognitive health is multidimensional cascade of functions. It encompasses an array of functions, including general intellectual ability, memory, language, allowing a person to interact effectively and appropriately with the environment. The risk factors for reduced physical and cognitive functions in elderly people, as identified in longitudinal studies, relate to comorbidities, critical care situations, physical and psychosocial health, environmental conditions, social circumstances, nutrition, and lifestyle. Depression and dementia are both common in older adults; cognitive functioning declines slightly with normal aging; depression itself can be associated with cognitive impairment and dementia. In this study the role of carnosine and related neuron specific naturally-occurring endogenous imidazole-containing dipeptide pharmacoperones (N-acetylcarnosine, carcinine) is revealed presently in a surprisingly large amounts in long-lived human tissues to correct conformational abnormalities leading to distinct neurodegeneration and age-related disease states, treating cognitive deficits, depression and intellectual disabilities. Carnosine serves as a physiological buffering agent and a metal ion (e.g., zinc and copper) chelator, endowed with ferroxidase type activity; possess anti-aging functions, and free-radical scavenging activity, is capable of delaying senescence and extending the life-span of cultured human fibroblasts; is able to kill transformed cells and protect cells against aldehydes and amyloid peptide fragment. Carnosine and carcinine exhibit a well-documented anti-glycating activity against the glycation of proteins, including low-density lipoproteins, glucose degradation products, esterase, histones. A tissue carnosine-degrading enzyme (CN2) colocalized with the activity of histidine decarboxylase to histamine neurons in the hypothalamic tuberomammillary nucleus (TMN) plays a key role in the neuro-transmission and neuroregulation roles of imidazole-containing based dipeptides. Carnosine released from skeletal muscle during exercise may be transported into TMN-histamine neurons and hydrolyzed. Timing of carnosine present in the chicken broth, the specific patented nutraceutical composition (Can-C Plus™), 1% N-acetylcarnosine lubricant eye drops or 1% carcinine lubricant eye drops formulations are important targeting posology vehicles that are involved in many CNS functions through the central brain histamine system including the vision enhancement functions, physiological regulation of cognitive functions, arousal; anxiety; activation of the sympathetic nervous system; the stress-related release of hormones from the pituitary and of central aminergic neurotransmitters; antinociception; water retention and suppression of eating. The roles for the carnosine-stimulated/mediated neuronal histamine system are proposed as a danger and physiological response system active in protection from neurodegenerative diseases and in management of cognitive deficits, depression and intellectual disabilities.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Depressão/tratamento farmacológico , Transtorno Depressivo/tratamento farmacológico , Dipeptídeos/farmacologia , Imidazóis/farmacologia , Deficiência Intelectual/tratamento farmacológico , Animais , Dipeptídeos/metabolismo , Humanos , Imidazóis/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-24910283

RESUMO

Telomere length is emerging as a biomarker for aging and survival is paternally inherited and associated with parental lifespan. Telomere-associated cellular senescence may contribute to certain age-related disorders, including an increase in cancer incidence, wrinkling and diminished skin elasticity, atherosclerosis, osteoporosis, weight loss, age-related cataract, glaucoma and others. Shorter telomere length in leukocytes was associated cross-sectionally with cardiovascular disorders and its risk factors, including pulse pressure and vascular aging, obesity, vascular dementia, diabetes, coronary artery disease, myocardial infarction (although not in all studies), cellular turnover and exposure to oxidative and inflammatory damage in chronic obstructive pulmonary disease. Effective regulation of abnormal therapeutic targets of an age-related disease requires the alteration of either the topological structure or dynamic characteristics of telomeres which are DNA-protein structures at the ends of eukaryotic chromosomes, the DNA of which comprise noncoding repeats of guanine-rich sequences. Telomeric DNA plays a fundamental role in protecting the cell from recombination and degradation, including those as the metabolic super-achievers in the body, organ systems in a given target network of a disease and aging. In order to manage and control the complex direct and indirect target hubs, in this paper, a review of the recent patents is made analyzing techniques, new approaches developed during the last years in adaptive pharmacology directed at slowing and preventing the loss of telomere length that may slow aging using pharmaceutical and nutritional module-based designs, such as with regard to the timing of administration of imidazole-containing dipeptides. We discuss our recent identification of the role of neuron-specific imidazole- containing dipeptide based compounds (L-carnosine, N-acetylcarnosine, carcinine) that regulate and therapeutically control telomere shortening, telomerase activity and cellular senescence. We support a therapeutic concept of using nonhydrolyzed forms of naturally occurring imidazole-dipeptide based compounds carnosine and carcinine, making it clinically possible that slowing down the rate of telomere shortening could slow down the human aging process in specific tissues where proliferative senescence is known to occur with the demonstrated evidence of telomere shortening appeared to be a hallmark of oxidative stress and disease. The preliminary longitudinal studies of elderly individuals suggest that longer telomeres are associated with better survival and an advanced oral pharmaconutrition provision with non-hydrolyzed carnosine (or carcinine and patented compositions thereof) is a useful therapeutic tool of a critical telomere length maintenance (allowing indirectly to manipulate with telomerase activity) that may fundamentally be applied in the therapeutic treatment of agerelated sight-threatening eye disorders, Diabetes mellitus, sarcopenia (that is the gradual loss of muscle mass) that can affect elderly people and subjects under the effect of exhausting exercises and physical load, prolong life expectancy, increase survival and chronological age of an organism in health control, smoking behavior, metabolic syndrome increasing the risk of developing cardio-vascular diseases, age-related neurodegenerative diseases, including Alzheimer's disease and cognitive impairment.


Assuntos
Dipeptídeos/farmacologia , Imidazóis/farmacologia , Estilo de Vida , Terapia de Alvo Molecular/métodos , Patentes como Assunto , Rejuvenescimento , Homeostase do Telômero/efeitos dos fármacos , Encurtamento do Telômero/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Carnosina/análogos & derivados , Carnosina/farmacologia , Carnosina/uso terapêutico , Dipeptídeos/uso terapêutico , Humanos , Imidazóis/uso terapêutico
12.
Recent Pat Drug Deliv Formul ; 8(3): 163-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24894799

RESUMO

It has been documented that telomere-associated cellular senescence may contribute to certain age-related disorders, including an increase in cancer incidence, wrinkling and diminished skin elasticity, atherosclerosis, osteoporosis, weight loss, age-related cataract, glaucoma and others. Shorter telomere length in leukocytes was associated crosssectionally with cardiovascular disorders and their risk factors, including pulse pressure and vascular aging, obesity, vascular dementia, diabetes, coronary artery disease, myocardial infarction (although not in all studies), cellular turnover and exposure to oxidative and inflammatory damage in chronic obstructive pulmonary disease. It has been proposed that telomere length may not be a strong biomarker of survival in older individuals, but it may be an informative biomarker of healthy aging. The data reveal that telomere dynamics and changes in telomerase activity are consistent elements of cellular alterations associated with changes in proliferative state and in this article these processes are consequently considered as the new therapeutic drug targets for physiological control with advanced drug delivery and nutritional formulations. In particular, the presence of highly specific correlations and early causal relationships between telomere loss in the absence of telomerase activity and replicative senescence or crisis, and from the other side, telomerase reactivation and cell immortality, point to new and important treatment strategies or the therapeutic manipulation during treatment of age related disorders and cancer. Once better controls and therapeutic treatments for aging and age-related disorders are achieved, cellular rejuvenation by manipulating telomeres and enzyme telomerase activity may reduce some of the physiological declines that accompany aging. In this work, we raise and support a therapeutic concept of using non-hydrolyzed forms of naturally occurring imidazoledipeptide based compounds carnosine and carcinine, making it clinically possible that slowing down the rate of telomere shortening could slow down the human aging process in specific tissues where proliferative senescence is known to occur with the demonstrated evidence of telomere shortening appeared to be a hallmark of oxidative stress and disease. The preliminary longitudinal studies of elderly individuals suggest that longer telomeres are associated with better survival and an advanced oral nutritional support with non-hydrolyzed carnosine (or carcinine and patented compositions thereof) and patented N-acetylcarnosine lubricant eye drops are useful therapeutic tools of a critical telomere length maintenance that may fundamentally be applied in the treatment of age-related sight-threatening eye disorders, prolong life expectancy, increase survival and chronological age of an organism in health control, smoking behavior and disease.


Assuntos
Envelhecimento/metabolismo , Dipeptídeos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Imidazóis/administração & dosagem , Estresse Oxidativo/fisiologia , Telomerase/metabolismo , Telômero/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Carnosina/administração & dosagem , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/administração & dosagem , Humanos , Estresse Oxidativo/efeitos dos fármacos , Telomerase/antagonistas & inibidores , Telômero/efeitos dos fármacos , Homeostase do Telômero/efeitos dos fármacos , Homeostase do Telômero/fisiologia
14.
Curr Drug Deliv ; 11(1): 24-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24783234

RESUMO

Cataracts in small animals are shown to be at least partially caused by oxidative damage to lens epithelial cells (LECs) and the internal lens; biomarkers of oxidative stress in the lens are considered as general biomarkers for life expectancy in the canine and other animals. Telomeres lengths and expressed telomerase activity in canine LECs may serve as important monitors of oxidative damage in normal LECs with documented higher levels of telomerase activity in cataractous LECs during cells' lifespan. Loss of functional telomere length below a critical threshold in LECs of canines during the effect of UV and chronic oxidative stress or metabolic failure, can activate programs leading to LEC senescence or death. Telomerase is induced in LECs of canines at critical stages of cataractogenesis initiation and exposure to oxidative stress through the involvement of catalytically active prooxidant transition metal (iron) ions. This work documents that transition metal ions (such as, ferrous ions- catalytic oxidants) might induce premature senescence in LECs of canines, telomere shortening with increased telomerase activity as adaptive response to UV light, oxidative and metabolic stresses. The therapeutic treatment with 1% N-acetylcarnosine (NAC) prodrug delivery is beneficial for prevention and dissolution of ripe cataracts in canines. This biological activity is based on the findings of ferroxidase activity pertinent to the dipeptide carnosine released ophthalmically from NAC prodrug of L-carnosine, stabilizing properties of carnosine on biological membranes based on the ability of the imidazole-containing dipeptides to interact with lipid peroxidation products and reactive oxygen species (ROS), to prevent membrane damage and delute the associated with membrane fragements protein aggregates. The advent of therapeutic treatment of cataracts in canines with N-acetylcarnosine lubricant eye drops through targeting the prevention of loss of functional telomere length below a critical threshold and "flirting" with an indirect effect with telomerase expression in LECs of canines during the effects of UV, chronic oxidative stress increases the successful rate of cataract management challenges in home veterinary care.


Assuntos
Antioxidantes/administração & dosagem , Carnosina/análogos & derivados , Catarata/tratamento farmacológico , Células Epiteliais/efeitos dos fármacos , Cristalino/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pró-Fármacos/administração & dosagem , Telomerase/antagonistas & inibidores , Telômero/metabolismo , Administração Oftálmica , Animais , Antioxidantes/química , Biomarcadores/metabolismo , Carnosina/administração & dosagem , Carnosina/química , Catarata/enzimologia , Catarata/genética , Catarata/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Membrana Celular/patologia , Senescência Celular/efeitos dos fármacos , Ceruloplasmina/metabolismo , Química Farmacêutica , Cães , Portadores de Fármacos , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Cristalino/enzimologia , Cristalino/patologia , Soluções Oftálmicas , Pró-Fármacos/química , Tecnologia Farmacêutica/métodos , Telomerase/metabolismo
15.
Curr Clin Pharmacol ; 9(2): 93-115, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23441838

RESUMO

Influenza A is a viral disease of global dimension, presenting with high morbidity and mortality in annual epidemics, and in pandemics which are of infrequent occurrence but which have very high attack rates. Influenza vaccines of the future must be directed toward use of conserved group-specific viral antigens, such as are present in transitional proteins which are exposed during the fusion of virus to the host cell. Influenza probes revealed a continuing battle for survival between host and parasite in which the host population updates the specificity of its pool of humoral immunity by contact with and response to infection with the most recent viruses which possess altered antigenic specificity in their hemagglutinin (HA) ligand. It is well known that the HA protein is found on the surface of the influenza virus particle and is responsible for binding to receptors on host cells and initiating infection. Polymorphonuclear neutrophils (PMN) have been reported to be involved in the initial host response to influenza A virus (IAV). Early after IAV infection, neutrophils infiltrate the airway probably due to release of chemokines that attract PMN. Clearly, severe IAV infection is characterized by increased neutrophil influx into the lung or upper respiratory tract. Carnosine (ß-alanyl-L-histidine) and anserine (N-ß-alanyl-1-methyl-L-histidine) are found in skeletal muscle of most vertebrates, including those used for food; for example, 100 g of chicken breast contains 400 mg (17.6 mmol/L) of carnosine and 1020 mg (33.6 mmol/l) of anserine. Carnosine-stimulated respiratory burst in neutrophils is a universal biological mechanism of influenza virus destruction. Our own studies revealed previously unappreciated functional effects of carnosine and related histidine containing compounds as a natural biological prevention and barrier against Influenza virus infection, expand public understanding of the antiviral properties of imidazole-containing dipeptide based compounds, and suggest important interactions between neutrophills and carnosine related compounds in the host response to viruses and bacteria. Carnosine and anserine were also found to reduce apoptosis of human neutrophils. In this way these histidine-containing compounds can modulate the Influenza virus release from neutrophills and reduce virus dissemination through the body of the organism. This review points the ability of therapeutic control of Influenza viral infections associated with modulation by oral nonhydrolized forms of carnosine and related histidine-containg compounds of PMN apoptosis which may be involved at least in part in the pathophysiology of the disease in animals and humans. The data presented in this article, overall, may have implications for global influenza surveillance and planning for pandemic influenza therapeutic prevention with oral forms of non-hydrolized natural L-carnosine as a suitable alternative to the conventional vaccination for various flu ailments.


Assuntos
Carnosina/farmacologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Carnosina/administração & dosagem , Histidina/química , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/efeitos dos fármacos , Autocuidado/métodos
16.
Hum Exp Toxicol ; 33(3): 284-316, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24220875

RESUMO

The increased oxidative stress in patients with smoking-associated disease, such as chronic obstructive pulmonary disease, is the result of an increased burden of inhaled oxidants as well as increased amounts of reactive oxygen species generated by various inflammatory, immune and epithelial cells of the airways. Nicotine sustains tobacco addiction, a major cause of disability and premature death. In addition to the neurochemical effects of nicotine, behavioural factors also affect the severity of nicotine withdrawal symptoms. For some people, the feel, smell and sight of a cigarette and the ritual of obtaining, handling, lighting and smoking a cigarette are all associated with the pleasurable effects of smoking. For individuals who are motivated to quit smoking, a combination of pharmacotherapy and behavioural therapy has been shown to be most effective in controlling the symptoms of nicotine withdrawal. In the previous studies, we proposed the viability and versatility of the imidazole-containing dipeptide-based compounds in the nutritional compositions as the telomere protection targeted therapeutic system for smokers in combination with in vitro cellular culture techniques being an investigative tool to study telomere attrition in cells induced by cigarette smoke (CS) and smoke constituents. Our working therapeutic concept is that imidazole-containing dipeptide-based compounds (non-hydrolyzed carnosine and carcinine) can modulate the telomerase activity in the normal cells and can provide the redox regulation of the cellular function under the terms of environmental and oxidative stress and in this way protect the length and the structure of telomeres from attrition. The detoxifying system of non-hydrolyzed carnosine or carcinine can be applied in the therapeutic nutrition formulations or installed in the cigarette filter. Patented specific oral formulations of non-hydrolyzed carnosine and carcinine provide a powerful manipulation tool for targeted therapeutic inhibition of cumulative oxidative stress and inflammation and protection from telomere attrition associated with smoking. It is demonstrated in this work that both non-hydrolyzed carnosine and carcinine are characterized by greater bioavailability than pure l-carnosine subjected to enzymatic hydrolysis with carnosinase, and perform the detoxification of the α,ß-unsaturated carbonyl compounds present in tobacco smoke. We argue that while an array of factors has shaped the history of the 'safer' cigarette, it is the current understanding of the industry's past deceptions and continuing avoidance of the moral implications of the sale of products that cause the enormous suffering and death of millions that makes reconsideration of 'safer' cigarettes challenging. In contrast to this, the data presented in the article show that recommended oral forms of non-hydrolyzed carnosine and carcinine protect against CS-induced disease and inflammation, and synergistic agents with the actions of imidazole-containing dipeptide compounds in developed formulations may have therapeutic utility in inflammatory lung diseases where CS plays a role.


Assuntos
Carnosina/análogos & derivados , Suplementos Nutricionais , Fumar/tratamento farmacológico , Carnosina/administração & dosagem , Carnosina/farmacocinética , Carnosina/uso terapêutico , Sequestradores de Radicais Livres , Saúde , Humanos , Estresse Oxidativo/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/etiologia , Fumaça/análise , Fumar/efeitos adversos , Fumar/epidemiologia , Encurtamento do Telômero/efeitos dos fármacos , Nicotiana/química
17.
Recent Pat Drug Deliv Formul ; 7(3): 216-56, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24236935

RESUMO

Patients suffering from the severe complications associated with both insulin- (IDDM) and non-insulin-dependent diabetes mellitus (NIDDM): nephropathy, retinopathy, neuropathy, and atherosclerosis are still largely left without a prospect of an efficient treatment. Chronic hyperglycaemia, the primary clinical manifestation of diabetes, is associated with development of certain of the diabetic complications. The accelerated formation of advanced glycation end-products (AGEs) due to elevated glycemia has repeatedly been reported as a central pathogenic factor in the development of diabetic microvascular complications. Glucose and α-dicarbonyl compounds chemically attach to proteins and nucleic acids without the aid of enzymes. Initially, chemically reversible Schiff base and Amadori product adducts form in proportion to glucose concentration. The major biological effects of excessive nonenzymatic glycosylation are leading to increased free radical production and compromised free radical inhibitory and scavenger systems, inactivation of enzymes; inhibition of regulatory molecule binding; crosslinking of glycosylated proteins and trapping of soluble proteins by glycosylated extracellular matrix (both may progress in the absence of glucose); decreased susceptibility to proteolysis; abnormalities of nucleic acid function; altered macromolecular recognition and endocytosis; and increased immunogenicity. The discovery of chemical agents that can inhibit deleterious glycation reactions is potentially of great therapeutic benefit to all diabetes-associated pathologies. This study demonstrates the progress in development of patented carnosine mimetics resistant in formulations to enzymatic hydrolysis with human carnosinases that are acting as a universal form of antioxidant, deglycating and transglycating agents that inhibit sugar-mediated protein cross-linking, chelate or inactivate a number of transition metal ions (including ferrous and copper ions), possess lipid peroxidase type of activity and protection of antioxidant enzymes from inactivation (such as in a case of superoxide dismutase). Carnosine biological mimetics react with methylglyoxal and they are described in this study as a glyoxalase mimetics. The imidazole-containing carnosine biological mimetics can react with a number of deleterious aldehydic products of lipid peroxidation and thereby suppress their toxicity. Carnosine and carcinine can also react with glycated proteins and inhibit advanced glycation end product formation. These studies indicate a therapeutic role for imidazole-containing antioxidants (non-hydrolized carnosine, carcinine, D-carnosine, ophthalmic prodrug N-acetylcarnosine, leucyl-histidylhidrazide and patented formulations thereof) in therapeutic management strategies for Type 2 Diabetes.


Assuntos
Antioxidantes/uso terapêutico , Complicações do Diabetes/tratamento farmacológico , Peptidomiméticos/uso terapêutico , Animais , Antioxidantes/farmacologia , Carnosina/química , Carnosina/farmacologia , Carnosina/uso terapêutico , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Desenho de Fármacos , Humanos , Hiperglicemia/complicações , Hiperglicemia/fisiopatologia , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Patentes como Assunto , Peptidomiméticos/farmacologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-23425625

RESUMO

Influenza (flu) is caused by a highly contagious virus that is spread by coughs and sneezes. Flu symptoms include high fever, chills and sweating, sore throat, weakness, headache, muscle and joint pains, and cough. Older people and those with an underlying medical condition are more likely to develop serious complications, including secondary bacterial pneumonia, primary influenza pneumonia, and inflammation of the brain or heart. There are three types of flu virus: A, B, and C. The flu virus has a unique ability to change its surface structure. This allows it to escape recognition by the body's immune system and cause widespread illness (epidemics and pandemics). Most cases of influenza occur within a 6- to 8-week period during winter and spring. Epidemics occur when there are minor changes in the nature of the virus so that more people within a community are susceptible. Influenza A is more likely to cause epidemics. Pandemics (worldwide epidemics) occur when there are major changes in the virus so that the disease affects a large proportion of people in a geographic region or on more than one continent. The findings presented in this article have many important implications for understanding the influenza A (H1N1) viral pathogenesis, prevention, and treatment. Direct viral cytotoxicity (referred cytopathic effect) is only a fraction of several types of events induced by virus infection. Nitric oxide and oxygen free radicals such as superoxide anion (O2-·) are generated markedly in influenza A (including H1N1) virus-infected host boosts, and these molecular species are identified as the potent pathogenic agents. The mutual interaction of nitric oxide (NO) with O2-· resulting in the formation of peroxynitrite is operative in the pathogenic mechanism of influenza virus pneumonia. Influenza virus infection involves pathological events in which oxygen free radicals play an important role in the pathogenesis. The toxicity and reactivity of oxygen radicals generated in excessive amounts mediate the overreaction of the host's immune response against the organs or tissues in which viruses are replicating, and this may explain the mechanism of tissue injuries observed in influenza virus infection of various types. In this article, the types of protection of carnosine in its bioavailable non-hydrolyzed forms in formulations are considered against reactive oxygen radical species-dependent injury, peroxynitrite damage, and other types of viral injuries in which impaired immune responses to viral pathogens are usually involved. Carnosine (ß-alanyl-L-histidine) shows the pharmacological intracellular correction of NO release, which might be one of the important factors of natural immunity in controlling the initial stages of influenza A virus infection (inhibition of virus replication) and virus-induced regulation of cytokine gene expression. The protective effects of orally applied non-hydrolyzed formulated species of carnosine include at least the direct interaction with NO, inhibition of cytotoxic NO-induced proinflammatory condition, and attenuation of the effects of cytokines and chemokines that can exert profound effects on inflammatory cells. These data are consistent with the hypothesis that natural products, such as chicken soup and chicken breast extracts rich in carnosine and its derivative anserine (ß-alanyl-1-methyl-L-histidine), could contribute to the pathogenesis and prevention of influenza virus infections and cold but have a limitation due to the susceptibility to enzymatic hydrolysis of dipeptides with serum carnosinase and urine excretion after oral ingestion of a commercial chicken extract. The formulations of non-hydrolyzed in digestive tract and blood natural carnosine peptide and isopeptide (γ-glutamyl-carnosine) products, manufactured at the cGMP-certified facility and patented by the authors, have promise in the control and prevention of influenza A (H1N1) virus infection, cough, and cold.


Assuntos
Carnosina/farmacologia , Influenza Humana/prevenção & controle , Óxido Nítrico/metabolismo , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Macrófagos/metabolismo , Macrófagos/virologia , Transdução de Sinais/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
19.
Recent Pat Drug Deliv Formul ; 7(1): 39-65, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22934629

RESUMO

While cataract surgery is generally recognized as being one of the safest operations, there is still a significant complication rate. From 30 to 50% of all patients in the United States having cataract extraction develop opacification of the posterior lens capsule within two years and require laser treatment with its own significant risk of complications. Of the patients having cataract surgery, 0.8% develop retinal detachments, from 0.6% to 1.3% were rehospitalized for corneal edema or required corneal transplantation and about 0.1% presented with endophthalmitis . Thus, aside from secondary cataract, about 2% of 1.3 million people, or 26,000 individuals in the United States annually develop serious complications as a result of cataract surgery. The aim of this investigation was to increase the safety and effectiveness of an individual intraocular lens (IOL) preventing an impairment in peroxide metabolism of the mature human cataractous lenses compared to normal lenses employing the specific nanotechnology coating which substitutes the inhibitory effect of the implantable device towards the active species of oxygen and the ability of IOL to regulate the H2O2 and lipid hydroperoxides levels in the surrounding medium. The implantation of IOLs with metabolic activity improves the capability of the surrounding ocular tissues to withstand oxidative stress induced in ocular humors by the photochemical and other metabolic reactions. The coated implantable medical device with thin film of platinum applied with magnetron sputtering, reacts as a body enzyme with deleterious peroxide compounds and free radical oxygen species in body fluids and tissue when said device is implanted into human body. The IOL having haptics coated with thin film of platinum, catalyzes the reduction of peroxide compounds to decrease their levels within the aqueous humor. Further, the coatings also scavenge toxic free radicals of oxygen, thus preventing cellular dysfunction resulting from oxidative attack. Coated IOLs according to the patented nanotechnology can address the vast majority of cataract surgery-induced complications, such as secondary cataract, intraocular inflammation (endophthalmitis) and foreign body reactions, cystoid macular oedema, corneal edema. The nanotechnology offers physicians and surgeons to develop and commercialize costeffective therapeutic medical implantable devices, products and support systems with metabolic activities for the treatment of ophthalmic diseases and of a wide range of pathological states and disorders which are treated by insertion of the implantable and prosthetic (polymeric) devices.


Assuntos
Antioxidantes/farmacologia , Extração de Catarata/efeitos adversos , Materiais Revestidos Biocompatíveis/farmacologia , Lentes Intraoculares , Nanoestruturas/administração & dosagem , Nanotecnologia , Peroxidase/metabolismo , Catálise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...