Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Agric Environ Med ; 31(2): 205-211, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38940104

RESUMO

INTRODUCTION AND OBJECTIVE: Snow cover serves as a unique indicator of environmental pollution in both urban and rural areas. As a seasonal cover, it accumulates various pollutants emitted into the atmosphere, thus providing insight into air pollution types and the relative contributions of different pollution sources. The aim of the study is to analyze the distribution of trace elements in snow cover to assess the anthropogenic influence on pollution levels, and better understand ecological threats. MATERIAL AND METHODS: The study was conducted in rural areas around the village of Wólka in the Lublin Province of eastern Poland, and in urban districts of the city of Lublin, capital of the Province. Samples were analyzed using Inductively Coupled Plasma-Mass Spectrometry, the Enrichment Factor (EF), and ecological risk indices (RI), were calculated to evaluate the contamination and potential ecological risks posed by the metals. RESULTS: The findings indicate higher concentrations of metals like sodium and iron in urban areas, likely due to road salt use and industrial activity, respectively. Enrichment factors showed significant anthropogenic contributions, particularly for metals like sodium, zinc, and cadmium, which had EF values substantially above natural levels. The potential ecological risk assessment highlighted a considerable ecological threat in urban areas compared to rural settings, primarily due to higher concentrations of metals. CONCLUSIONS: The variation in metal concentrations between urban and rural snow covers reflects the impact of human activities on local environments. Urban areas showed higher pollution levels, suggesting the need for targeted pollution control policies to mitigate the adverse ecological impacts. This study underscores the importance of continuous monitoring and comprehensive risk assessments to effectively manage environmental pollution.


Assuntos
Monitoramento Ambiental , Metais , Neve , Neve/química , Polônia , Monitoramento Ambiental/métodos , Medição de Risco , Metais/análise , Humanos , Poluentes Atmosféricos/análise , Cidades , População Rural
2.
Ann Agric Environ Med ; 30(4): 677-684, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38153071

RESUMO

INTRODUCTION AND OBJECTIVE: The article analyzes the content of heavy metals and standard physical as well as chemical pollution indicators in different types of sediments from stormwater, combined sewer and sanitary sewer systems. MATERIAL AND METHODS: Nickel, lead, chromium, copper, zinc and cadmium, as well as standard physical and chemical pollution indicators, were determined in sewage sediments. Aqueous extracts of sediments samples, taken from storm water sewer inlet sediments traps, storm sewers, sanitary sewers and combined sewers, were prepared in accordance with PN-EN 12457-2:2006. After mineralization, the concentrations of the metals: nickel, lead, chromium, copper, zinc and cadmium in the extracts were determined using the inductively coupled plasma emission spectroscopy technique. RESULTS: The results were analyzed with a non-metric multidimensional scaling algorithm. The heavy metal content was variable depending on the sediments collection site. The heavy metals nickel, lead, chromium, copper, zinc and cadmium were found in the sediments from stormwater inlets, storm sewer and sanitary sewer channels, with variability in the concentration of individual metals. The sediments from the flushing of sanitary sewers and combined sewers did not contain cadmium. CONCLUSIONS: The content of heavy metals in sediments varied depending on the sampling location and type of sewer system, indicating the need for detailed monitoring to identify the sources of emissions. Sediments from stormwater sewers have higher concentrations of heavy metals, with those from sewer inlets showing zinc concentrations exceeding regulatory limits, highlighting the variability and potential environmental impact of different sewer systems.


Assuntos
Cobre , Metais Pesados , Cobre/análise , Cádmio/análise , Níquel , Saúde Pública , Sedimentos Geológicos/química , Monitoramento Ambiental , Zinco/análise , Cromo
3.
Ann Agric Environ Med ; 30(3): 455-461, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37772520

RESUMO

INTRODUCTION AND OBJECTIVE: The identification and understanding of interactions between contaminants present in sediments from stormwater and combined sewer systems is a prerequisite for their proper management, and provides a basis for developing effective strategies to minimize their negative impact on humans and the environment. The studypresents the method described in PN-EN 12457-2:2006 as a possible technique for studying the mobility of heavy metals in sediments from stormwater and combined sewer systems. MATERIAL AND METHODS: The presented PN-EN 12457-2:2006 method is a relatively simple technique for preparing extracts for the determination of heavy metals in sediments from stormwater and combined sewer systems, consisting of one-step leaching, which is quick to perform. In addition, it allows determination of the characteristics of the samples to be analyzed, and indicates procedures and tests for evaluating hazardous substances released from solid waste. RESULTS: The results of the concentrations of leached heavy metals: chromium, copper, nickel, lead and zinc, obtained in the study, corresponded to the concentrations of the exchange fraction of sludge when using the recommended method with sequential extraction (Student's t-test, p=0.263). In the literature review conducted, no papers were found on the application of the leaching method to prepare extracts for the determination of heavy metals in sediments from stormwater and combined sewer systems. CONCLUSIONS: The PN-EN 12457-2:2006 method is capable of providing important data on the potential risks to humans and the environment from the presence of contaminants in sewage sludge.

4.
PeerJ ; 11: e15248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283889

RESUMO

Macrophytes are one of the important indicators used in assessing the anthropic impact on aquatic ecosystems. The structure of macrophyte communities of two rivers were compared by species composition, dominant species and projective cover using statistical methods. It is shown that the influence of storm runoff on these rivers is manifested in the form of a change in the dominant species composition. Based on the statistical analysis carried out, it can be argued that, despite the peculiarities of the flora composition of each of the rivers, the influence of storm runoffs largely neutralizes this specificity, determining the situation in local areas immediately below the runoff. In the area of the effluent discharge the dominance of individual species and an increase in the area overgrown with macrophytes was observed. In the area of stormwater discharge on the Psel River, species were usually present: Nuphar lutea, Ceratophyllum demersum, Myriophyllum spicatum and on the Bystrica River-Glyceria maxima, Sagitaria sagittiformis, Stuckenia pectinata and Potamogeton crispus. The use of the NMDS method has been found to provide good insight into the structural rearrangements in macrophyte communities affected by runoff from stormwater systems.


Assuntos
Potamogetonaceae , Rios , Ecossistema , Biomarcadores Ambientais , Poaceae , Sementes
5.
PLoS One ; 17(10): e0275629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36251723

RESUMO

A method for assessing the degree of impact of wastewater treatment plant discharge on receiving rivers was proposed, based on the structural indicators of the population of ciliated protozoa. It was shown that the ratio of attached, crawling and free-swimming forms in bottom sediments changes under the influence of discharge. In the points subject to organic pollution, the share of attached filter-feeding bacteriovorous ciliates increases in the assemblage of ciliated protozoa. The proposed Attached Form Index (AFI) takes this ratio into account. The use of AFI makes it possible to assess the restructuring of the assemblage of ciliated protozoa under the influence of point sources of pollution, to establish a zone of negative influence of runoff, to assess the degree of restoration of the aquatic ecosystem, as the influence of the pollution source weakened.


Assuntos
Cilióforos , Poluentes Químicos da Água , Purificação da Água , Ecossistema , Monitoramento Ambiental , Rios/química , Águas Residuárias
6.
PeerJ ; 8: e9325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596047

RESUMO

Reduction of the greenhouse effect is primarily associated with the reduction of greenhouse gas (GHG) emissions. Carbon dioxide (CO2) is one of the gases that increases the greenhouse effect - it is responsible for about half of the greenhouse effect. Significant sources of CO2 are wastewater treatment plants (WWTPs) and waste management, with about 3% contribution to global emissions. CO2 is produced mainly in the aerobic stage of wastewater purification and is a consequence of activated sludge activity. Although the roles of activated sludge components in the purification process have been studied quite well, their quantitative contribution to CO2 emissions is still unknown. The emission of CO2 caused by prokaryotes and eukaryotes over the course of a year (taking into account subsequent seasons) in model sequencing batch reactors (SBR) is presented in this study. In this work, for the first time, we aimed to quantify this contribution of eukaryotic organisms to total CO2 emissions during the WWTP process. It is of the order of several or more ppm. The contribution of CO2 produced by different components of activated sludge in WWTPs can improve estimation of the emissions of GHGs in this area of human activity.

7.
J Environ Qual ; 46(4): 714-721, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28783801

RESUMO

This work presents the results of studies on the impact of spent drilling fluids cotreated with municipal wastewater on the rate of the wastewater treatment process and the structure of the community of eukaryotic organisms inhabiting an activated sludge. The studies were conducted under laboratory conditions in sequencing batch reactors. The effect of added polymer-potassium drilling fluid (DF1) and polymer drilling fluid (DF2) at dosages of 1 and 3% of wastewater volume on the rate of removal of total suspended solids, turbidity, chemical oxygen demand, and the content of total and ammonium nitrogen were analyzed, taking into account the values of these parameters measured at the end of each operating cycle. In addition to the impacts on the aforementioned physicochemical indices, the influence of drilling fluid on the biomass of various groups of eukaryotes in activated sludge was analyzed. The impact of the drilling fluid was highly dependent on its type and dosage. A noticeable slowdown in the rate of the wastewater treatment process and a negative effect on the organisms were observed after the addition of DF2. This effect intensified after an increase in fluid dose. However, no statistically significant negative changes were observed after the introduction of DF1. Conversely, the removal rate of some of the analyzed pollutant increased.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Nitrogênio
8.
J Environ Qual ; 46(1): 193-200, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28177406

RESUMO

Spent drilling muds are the liquid residues of rock drilling operations. Due to a high concentration of suspended solids and potentially detrimental chemical properties, they can negatively affect microorganisms participating in wastewater treatment processes. We evaluated the addition of a potassium-polymer drilling fluid (DF) to activated sludge in laboratory sequencing batch reactors (SBRs) for municipal wastewater treatment. Ciliate assemblage, the most dynamic component of eukaryotes in activated sludge, and which is highly sensitive to changes in the system, was evaluated. The average ciliate abundance dropped by about 51% (SBR 2; 1% DF added) and 33% (SBR 3; 3% DF added) in comparison to the control (SBR 1; wastewater only). A decrease in the total number of ciliate species during the experiment was observed, from 25 to 24 in SBR 2 and from 17 to 13 in SBR 3. Moreover, a drop in the number of dominant (>100 individuals mL) ciliate species was observed during the experiment-from eight in the control to five in SBR 2 and four in SBR 3-signaling noticeable changes in the quantitative structure of ciliate species. The species analyzed showed different responses to DF addition. The most sensitive was , which is bacteriovorus. In contrast, two predators, and , showed no reaction to DF addition. Our results indicate that addition of potassium-polymer DF, in doses of 1 to 3% of the treated wastewater volume, had no toxic effects on ciliates, but qualitative and quantitative changes in their community were observed.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Esgotos , Águas Residuárias
9.
Eur J Protistol ; 51(5): 470-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26465372

RESUMO

Due to its ability to feed on filamentous bacteria, the rotifer Lecane inermis has already been recognized as a potential control agent of activated sludge bulking, which is usually caused by the excessive growth of filamentous microorganisms. However, their effectiveness depends, in part, on their abundance. We studied the influence of high densities of L. inermis on the protozoan community in activated sludge from a wastewater treatment plant (WWTP) in 4 laboratory-scale sequencing batch bioreactors (SBRs). Two treatments and two controls were subjected to nutrient removal system in process similar to that used in a WWTP. The experiment lasted 9 days and was repeated in 24-h cycles, including phases of agitation with feeding, aeration and agitation and sedimentation with decantation at the end of the cycle. In total, 32 taxa were identified, among which 25 were ciliated protozoa, 4 were amoebae, 2 were flagellates, and one was a nematode. Rotifers were then introduced to 2 bioreactors at a final concentration of 500ind.mL(-1), and the taxonomic composition and abundance of the activated sludge microfauna were assessed 2, 5 and 8 days thereafter. The mean density of ciliates on the first day of experiment was 12,610ind.mL(-1) and diminished to 4868±432ind.mL-±432ind.mL(-1) in the control and 5496±638ind.mL(-1) in the rotifer-treated group on the last day. Thus, even extremely high densities of artificially introduced rotifers did not negatively affect the protozoan community. On the contrary, the protozoan community was more diverse in the treatment group than in the control.


Assuntos
Biodiversidade , Reatores Biológicos/parasitologia , Cilióforos/fisiologia , Rotíferos/fisiologia , Esgotos/parasitologia , Animais , Reatores Biológicos/microbiologia , Densidade Demográfica , Esgotos/microbiologia
10.
Water Sci Technol ; 61(3): 573-80, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20150692

RESUMO

We monitored the succession of nitrifiers in a newly opened wastewater treatment plant for five weeks. After the first distinct decrease in total nitrogen, we began monitoring the appearance, size and number of nitrifying bacteria colonies using the fluorescence in situ hybridization (FISH) method. Ammonia oxidizing bacteria (AOB) colonies were visualized under green excitation as red, and nitrite oxidizing bacteria (NOB) colonies were visualized under blue excitation as green. The changes in protozoan community were monitored simultaneously. Ciliates were divided into four functional groups: predatory, bacterivorous free-swimming, bacterivorous crawling, and sessile. The results showed that at the time of the first distinct total nitrogen decrease, the mean length of both AOB and NOB were relatively low, but the colonies, especially those of nitrite oxidizers, were abundant. In time, the distribution of ammonia oxidizer colonies shifted towards larger sizes, but their quantity decreased. In the case of nitrite oxidizers, a similar trend was noticeable but less pronounced. These changes corresponded with an increasing number of crawling bacterivorous ciliates dominated by the "scavenger" genus Aspidisca. The increasing size of nitrifier colonies may have been due to the growing grazing pressure from crawling bacterivorous ciliates. The strong grazing pressure did not negatively affect N-NH(4)(+) removal effectiveness.


Assuntos
Amônia/metabolismo , Bactérias/crescimento & desenvolvimento , Cilióforos/crescimento & desenvolvimento , Esgotos/microbiologia , Esgotos/parasitologia , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Cilióforos/metabolismo , Clima Frio , Nitritos/metabolismo , Polônia , Crescimento Demográfico , Estações do Ano , Ucrânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...