Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1867(2): 130283, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36414179

RESUMO

BACKGROUND: Neuroblastoma is one of the most common malignancies in childhood, accounts for approximately 7% of all malignancies. Andrographolide (AN) inhibits cancer cells progression via multiple pathways like cell cycle arrest, mitochondrial apoptosis, NF-κß inhibition, and antiangiogenesis mechanism. Despite multiple advantages, application of AN is very limited due to its low aqueous solubility (6.39 ± 0.47 µg/mL), high lipophilicity (log P âˆ¼ 2.632 ± 0.135), and reduced stability owing to pH sensitive lactone ring. OBJECTIVES AND RESULTS: In present investigation, a molecular complex of AN with soya-L-α-phosphatidyl choline (SPC) was synthesized as ANSPC and characterized by FT-IR and1H NMR spectroscopy. Spectral and molecular simulation techniques confirmed the intermolecular interactions between the 14-OH group of AN and the N+(CH3)3part of SPC. In addition, molecular dynamics (MD) simulation was used to determine the degree of interaction between various proteins such as TNF-α, caspase-3, and Bcl-2. Later, ANSPC complex was transformed in to self-assembled soft nanoparticles of size 201.8 ± 1.48 nm with PDI of 0.092 ± 0.004 and zeta potential of -21.7 ± 0.85 mV. The IC50 offree AN (8.319 µg/mL) and the self-assembled soft ANSPC nanoparticles (3.406 µg/mL âˆ¼ 1.2 µg of AN) against Neuro2a cells was estimated with significant (P < 0.05) difference. Interestingly, the self-assembled soft ANSPC nanoparticles showed better endocytosis compared to free AN in Neuro2a cells. In-vitrobiological assays confirmed that self-assembled soft ANSPC nanoparticles induces apoptosis in Neuro2a cells by declining the MMP (Δψm) and increasing the ROS generation. CONCLUSION: Self-assembled soft ANSPC nanoparticles warrant further in-depth antitumor study in xenograft model of neuroblastoma to establish the anticancer potential.


Assuntos
Nanopartículas , Neuroblastoma , Humanos , Fosfolipídeos , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Neuroblastoma/tratamento farmacológico
2.
J Pharm Bioallied Sci ; 14(3): 121-125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506727

RESUMO

Mastitis has well-recognized harmful effects on dairy farm profitability. Furthermore, mastitis impairs the milk component synthesizing ability of secretary tissues. Various therapies are available for the treatment of clinical mastitis. Meloxicam exhibits preferential binding to Cyclooxygenase-2 (COX-2) receptor and consequently generates fewer negative gastrointestinal side effects than nonspecific COX inhibitors such as flunixin meglumine and ketoprofen. Toward this end, research efforts directed at understanding the use of meloxicam alone and in combination with other antibiotics to improve milk quality and production. Therefore, in this review, we have highlighted the mechanism, biopharmaceutical challenges, and merits of meloxicam usage in dairy cattle mastitis. In addition, we also presented the integration of artificial neural network, in silico docking, and nanotechnology-driven topical drug delivery cargo as future opportunity for efficient delivery of meloxicam in the management of clinical mastitis.

3.
Curr Pharm Des ; 28(20): 1611-1620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747957

RESUMO

Luliconazole is the first and only anti-fungal agent approved for the short-term treatment of superficial fungal infections. However, commercially available conventional topical dermal drug delivery cargo of luliconazole is associated with certain limitations, like lower skin permeation and shorter skin retention of drug. Therefore, the present review is an attempt to unravel the penetration hurdles in luliconazole topical dermal drug delivery. Moreover, we have also summarized the activity of functional nanomaterials-based drug delivery systems employed by the scientific fraternity to improve luliconazole efficacy in superficial fungal infections on a case-to-case basis. In addition, efforts have also been made to unveil the critically acclaimed mechanism of action of luliconazole against fungal cells. Under the framework of future prospects, we have analyzed the combination of luliconazole with isoquercetin using the in-silico docking technique for offering synergistic antifungal activity. Isoquercetin exhibited a good affinity for superoxide dismutase (SOD), a fungal target, owing to the formation of hydrogen bonds with Glu132, Glu133, and Arg143, in addition to a few hydrophobic interactions. On the other hand, luliconazole inhibited lanosterol-14α-demethylase, and consequently blocked ergosterol. In addition, nanotechnology and artificial neural network (ANN) derived integrated drug delivery systems may also be explored for augmenting the luliconazole therapeutic efficacy in topical fungal infections. Synergy of ANN models along with topical nanoscaled drug delivery may help to achieve critical quality attributes (CQA), leading to commercial success of luliconazole.


Assuntos
Dermatomicoses , Nanoestruturas , Antifúngicos/uso terapêutico , Dermatomicoses/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Imidazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...