Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675751

RESUMO

Currently, no effective vaccine to prevent human immunodeficiency virus (HIV) infection is available, and various platforms are being examined. The vesicular stomatitis virus (VSV) vaccine vehicle can induce robust humoral and cell-mediated immune responses, making it a suitable candidate for the development of an HIV vaccine. Here, we analyze the protective immunological impacts of recombinant VSV vaccine vectors that express chimeric HIV Envelope proteins (Env) in rhesus macaques. To improve the immunogenicity of these VSV-HIV Env vaccine candidates, we generated chimeric Envs containing the transmembrane and cytoplasmic tail of the simian immunodeficiency virus (SIV), which increases surface Env on the particle. Additionally, the Ebola virus glycoprotein was added to the VSV-HIV vaccine particles to divert tropism from CD4 T cells and enhance their replications both in vitro and in vivo. Animals were boosted with DNA constructs that encoded matching antigens. Vaccinated animals developed non-neutralizing antibody responses against both the HIV Env and the Ebola virus glycoprotein (EBOV GP) as well as systemic memory T-cell activation. However, these responses were not associated with observable protection against simian-HIV (SHIV) infection following repeated high-dose intra-rectal SHIV SF162p3 challenges.

2.
Vaccines (Basel) ; 12(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38400125

RESUMO

This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.

3.
iScience ; 26(9): 107612, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37670783

RESUMO

Recent publications have explored intranasal (i.n.) adenovirus-based (Ad) vaccines as an effective strategy for SARS-CoV-2 in pre-clinical models. However, the effects of prior immunizations and infections have yet to be considered. Here, we investigate the immunomodulatory effects of Mycobacterium bovis BCG pre-immunization followed by vaccination with an S-protein-expressing i.n. Ad, termed Ad(Spike). While i.n. Ad(Spike) retains some protective effect after 6 months, a single administration of BCG-Danish prior to Ad(Spike) potentiates its ability to control viral replication of the B.1.351 SARS-CoV-2 variant within the respiratory tract. Though BCG-Danish did not affect Ad(Spike)-generated humoral immunity, it promoted the generation of cytotoxic/Th1 responses over suppressive FoxP3+ TREG cells in the lungs of infected mice. Thus, this vaccination strategy may prove useful in limiting future pandemics by potentiating the long-term efficacy of mucosal vaccines within the context of the widely distributed BCG vaccine.

4.
Emerg Microbes Infect ; 12(2): 2251595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649434

RESUMO

Despite the human immunodeficiency virus (HIV) pandemic continuing worldwide for 40 years, no vaccine to combat the disease has been licenced for use in at risk populations. Here, we describe a novel recombinant vesicular stomatitis virus (rVSV) vector vaccine expressing modified HIV envelope glycoproteins and Ebola virus glycoprotein. Three heterologous immunizations successfully prevented infection by a different clade SHIV in 60% of non-human primates (NHPs). No trend was observed between resistance and antibody interactions. Resistance to infection was associated with high proportions of central memory T-cell CD69 and CD154 marker upregulation, increased IL-2 production, and a reduced IFN-γ response, offering insight into correlates of protection.


Assuntos
Infecções por HIV , Vacinas , Animais , Macaca mulatta , Vesiculovirus , Regulação para Cima , Antígenos Virais , Complicações Pós-Operatórias , Infecções por HIV/prevenção & controle
5.
NPJ Vaccines ; 7(1): 172, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36543794

RESUMO

In recent years, tattooing technology has shown promising results toward evaluating vaccines in both animal models and humans. However, this technology has some limitations due to variability of experimental evaluations or operator procedures. The current study evaluated a device (intradermal oscillating needle array injection device: IONAID) capable of microinjecting a controlled dose of any aqueous vaccine into the intradermal space. IONAID-mediated administration of a DNA-based vaccine encoding the glycoprotein (GP) from the Ebola virus resulted in superior T- and B-cell responses with IONAID when compared to single intramuscular (IM) or intradermal (ID) injection in mice. Moreover, humoral immune responses, induced after IONAID vaccination, were significantly higher to those obtained with traditional passive DNA tattooing in guinea pigs and rabbits. This device was well tolerated and safe during HIV vaccine delivery in non-human primates (NHPs), while inducing robust immune responses. In summary, this study shows that the IONAID device improves vaccine performance, which could be beneficial to the animal and human health, and importantly, provide a dose-sparing approach (e.g., monkeypox vaccine).

6.
NPJ Vaccines ; 7(1): 49, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474311

RESUMO

The SARS-CoV-2 pandemic is an ongoing threat to global health, and wide-scale vaccination is an efficient method to reduce morbidity and mortality. We designed and evaluated two DNA plasmid vaccines, based on the pIDV-II system, expressing the SARS-CoV-2 spike gene, with or without an immunogenic peptide, in mice, and in a Syrian hamster model of infection. Both vaccines demonstrated robust immunogenicity in BALB/c and C57BL/6 mice. Additionally, the shedding of infectious virus and the viral burden in the lungs was reduced in immunized hamsters. Moreover, high-titers of neutralizing antibodies with activity against multiple SARS-CoV-2 variants were generated in immunized animals. Vaccination also protected animals from weight loss during infection. Additionally, both vaccines were effective at reducing both pulmonary and extrapulmonary pathology in vaccinated animals. These data show the potential of a DNA vaccine for SARS-CoV-2 and suggest further investigation in large animal and human studies could be pursued.

7.
J Infect Dis ; 225(10): 1852-1855, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-34791300

RESUMO

Numerous studies have demonstrated the importance of the adaptive immunity for survival following Ebola virus (EBOV) infection. To evaluate the contribution of tissue damage to EBOV-induced immune suppression, acute liver damage or hemolysis, 2 symptoms associated with lethal EBOV infection, were chemically induced in vaccinated mice. Results show that either liver damage or hemolysis was sufficient to inhibit the host humoral response against EBOV glycoprotein and to drastically reduce the level of circulating T cells. This study thus provides a possible mechanism for the limited specific antibody production and lymphopenia in individuals with lethal hemorrhagic fever infections.


Assuntos
Formação de Anticorpos , Doença pelo Vírus Ebola , Linfopenia , Animais , Anticorpos Antivirais , Ebolavirus , Glicoproteínas , Hemólise , Doença pelo Vírus Ebola/imunologia , Fígado/patologia , Fígado/virologia , Linfopenia/virologia , Camundongos
8.
Vaccine ; 39(49): 7175-7181, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34774358

RESUMO

The development of new, low-cost vaccines and effective gene therapies requires accurate delivery and high-level expression of candidate genes. We developed a plasmid vector, pIDV-II, that allows for both easy manipulation and high expression of exogenous genes in mammalian cells. This plasmid is based upon the pVax1 plasmid and shares a common structure with typical mammalian transcription units. It is composed of a chicken ß-actin promoter (CAG), followed by an intron and flanked by two restriction sites, and also includes a post-transcriptional regulatory element, followed by a transcriptional termination signal. While the modification of pVax1 elements either decreased eGFP expression levels or had no effect at all, replacement of the promoter, the poly-A signal, deletion of the T7 and AmpR promoters, and inversion of the ORI-Neo/Kan cassette, significantly increased in vitro eGFP expression with the modified plasmid called pIDV-II. To further evaluate our vector, expression levels of three viral antigens were compared in cell lines transfected either with pVax1 or pCAGGS backbones as controls. Higher transgene expression was consistently observed with pIDV-II. The humoral and cellular responses generated in mice immunized with pIDV-II vs pVax1 expressing each viral antigen individually were superior by 2-fold or more as measured by ELISA and ELISPOT assays. Overall these results indicate that pIDV-II induces robust transgene expression, with concomitant improved cellular and humoral immune responses against the transgene of interest over pVax1. The new vector, pIDV-II, offers an additional alternative for DNA based vaccination and gene therapy for animal and human use.


Assuntos
Vacinas de DNA , Animais , DNA , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Transgenes , Vacinas de DNA/genética
9.
Microorganisms ; 9(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576803

RESUMO

The global spread of ticks and various tick-borne viruses (TBVs) suggests the possibility of new tick-borne diseases emerging. Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging TBV of the Nairoviridae family that causes serious disease that can be fatal in humans. CCHFV endemic foci can be found in Africa, Asia, the Middle East, and South-Eastern Europe, and has spread to previously unaffected regions and nations, such as Spain, over the last two decades. In this review, we discuss the current situation of CCHFV in Asia, Africa and Europe based on existing knowledge, and we discuss driving factors in the distribution and transmission of the virus, such as the spread of tick vector species and host reservoirs.

10.
Microorganisms ; 9(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925854

RESUMO

One year since the first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China, several variants of concern (VOC) have appeared around the world, with some variants seeming to pose a greater thread to public health due to enhanced transmissibility or infectivity. This study provides a framework for molecular characterization of novel VOC and investigates the effect of mutations on the binding affinity of the receptor-binding domain (RBD) to human angiotensin-converting enzyme 2 (hACE2) using in silico approach. Notable nonsynonymous mutations in RBD of VOC include the E484K and K417N/T that can be seen in South African and Brazilian variants, and N501Y and D614G that can be seen in all VOC. Phylogenetic analyses demonstrated that although the UK-VOC and the BR-VOC fell in the clade GR, they have different mutation signatures, implying an independent evolutionary pathway. The same is true about SA-VOC and COH-VOC felling in clade GH, but different mutation signatures. Combining molecular interaction modeling and the free energy of binding (FEB) calculations for VOC, it can be assumed that the mutation N501Y has the highest binding affinity in RBD for all VOC, followed by E484K (only for BR-VOC), which favors the formation of a stable complex. However, mutations at the residue K417N/T are shown to reduce the binding affinity. Once vaccination has started, there will be selective pressure that would be in favor of the emergence of novel variants capable of escaping the immune system. Therefore, genomic surveillance should be enhanced to find and monitor new emerging SARS-CoV-2 variants before they become a public health concern.

11.
Viruses ; 14(1)2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35062276

RESUMO

Mammal-associated coronaviruses have a long evolutionary history across global bat populations, which makes them prone to be the most likely ancestral origins of coronavirus-associated epidemics and pandemics globally. Limited coronavirus research has occurred at the junction of Europe and Asia, thereby investigations in Georgia are critical to complete the coronavirus diversity map in the region. We conducted a cross-sectional coronavirus survey in bat populations at eight locations of Georgia, from July to October of 2014. We tested 188 anal swab samples, remains of previous pathogen discovery studies, for the presence of coronaviruses using end-point pan-coronavirus RT-PCR assays. Samples positive for a 440 bp amplicon were Sanger sequenced to infer coronavirus subgenus or species through phylogenetic reconstructions. Overall, we found a 24.5% positive rate, with 10.1% for Alphacoronavirus and 14.4% for Betacoronavirus. Albeit R. euryale, R. ferrumequinum, M. blythii and M. emarginatus were found infected with both CoV genera, we could not rule out CoV co-infection due to limitation of the sequencing method used and sample availability. Based on phylogenetic inferences and genetic distances at nucleotide and amino acid levels, we found one putative new subgenus and three new species of Alphacoronavirus, and two new species of Betacoronavirus.


Assuntos
Quirópteros/virologia , Infecções por Coronavirus/veterinária , Coronavirus/genética , Animais , Sequência de Bases , Coronavirus/classificação , Coronavirus/isolamento & purificação , Infecções por Coronavirus/virologia , Estudos Transversais , Variação Genética , Geografia , República da Geórgia , Filogenia , RNA Viral/genética , Proteínas Virais/genética
12.
BMC Microbiol ; 11: 139, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21682874

RESUMO

BACKGROUND: Francisella tularensis, the causative agent of tularemia, displays subspecies-specific differences in virulence, geographic distribution, and genetic diversity. F. tularensis subsp. holarctica is widely distributed throughout the Northern Hemisphere. In Europe, F. tularensis subsp. holarctica isolates have largely been assigned to two phylogenetic groups that have specific geographic distributions. Most isolates from Western Europe are assigned to the B.Br.FTNF002-00 group, whereas most isolates from Eastern Europe are assigned to numerous lineages within the B.Br.013 group. The eastern geographic extent of the B.Br.013 group is currently unknown due to a lack of phylogenetic knowledge about populations at the European/Asian juncture and in Asia. In this study, we address this knowledge gap by describing the phylogenetic structure of F. tularensis subsp. holarctica isolates from the country of Georgia, and by placing these isolates into a global phylogeographic context. RESULTS: We identified a new genetic lineage of F. tularensis subsp. holarctica from Georgia that belongs to the B.Br.013 group. This new lineage is genetically and geographically distinct from lineages previously described from the B.Br.013 group from Central-Eastern Europe. Importantly, this new lineage is basal within the B.Br.013 group, indicating the Georgian lineage diverged before the diversification of the other known B.Br.013 lineages. Although two isolates from the Georgian lineage were collected nearby in the Ukrainian region of Crimea, all other global isolates assigned to this lineage were collected in Georgia. This restricted geographic distribution, as well as the high levels of genetic diversity within the lineage, is consistent with a relatively older origin and localized differentiation. CONCLUSIONS: We identified a new lineage of F. tularensis subsp. holarctica from Georgia that appears to have an older origin than any other diversified lineages previously described from the B.Br.013 group. This finding suggests that additional phylogenetic studies of F. tularensis subsp. holarctica populations in Eastern Europe and Asia have the potential to yield important new insights into the evolutionary history and phylogeography of this broadly dispersed F. tularensis subspecies.


Assuntos
Francisella tularensis/classificação , Francisella tularensis/genética , Filogeografia , Tularemia/microbiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Francisella tularensis/isolamento & purificação , República da Geórgia , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...