Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36236268

RESUMO

With the development of human society, there is an increasing importance for reliable person identification and authentication to protect a person's material and intellectual property. Person identification based on brain signals has captured substantial attention in recent years. These signals are characterized by original patterns for a specific person and are capable of providing security and privacy of an individual in biometric identification. This study presents a biometric identification method based on a novel paradigm with accrual cognitive brain load from relaxing with eyes closed to the end of a serious game, which includes three levels with increasing difficulty. The used database contains EEG data from 21 different subjects. Specific patterns of EEG signals are recognized in the time domain and classified using a 1D Convolutional Neural Network proposed in the MATLAB environment. The ability of person identification based on individual tasks corresponding to a given degree of load and their fusion are examined by 5-fold cross-validation. Final accuracies of more than 99% and 98% were achieved for individual tasks and task fusion, respectively. The reduction of EEG channels is also investigated. The results imply that this approach is suitable to real applications.


Assuntos
Identificação Biométrica , Eletroencefalografia , Identificação Biométrica/métodos , Encéfalo , Cognição , Eletroencefalografia/métodos , Humanos , Redes Neurais de Computação
2.
Sensors (Basel) ; 21(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34450727

RESUMO

This article describes the design of a smart steering wheel intended for use in unobtrusive health and drowsiness monitoring. The aging population, cardiovascular disease, personalized medicine, and driver fatigue were significant motivations for developing a monitoring platform in cars because people spent much time in cars. The purpose was to create a unique, comprehensive monitoring system for the driver. The crucial parameters in health or drowsiness monitoring, such as heart rate, heart rate variability, and blood oxygenation, are measured by an electrocardiograph and oximeter integrated into the steering wheel. In addition, an inertial unit was integrated into the steering wheel to record and analyze the movement patterns performed by the driver while driving. The developed steering wheel was tested under laboratory and real-life conditions. The measured signals were verified by commercial devices to confirm data correctness and accuracy. The resulting signals show the applicability of the developed platform in further detecting specific cardiovascular diseases (especially atrial fibrillation) and drowsiness.


Assuntos
Condução de Veículo , Idoso , Eletrocardiografia , Humanos , Monitorização Fisiológica , Oximetria , Vigília
3.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917589

RESUMO

A capacitive measurement of the biosignals is a very comfortable and unobtrusive way suitable for long-term and wearable monitoring of health conditions. This type of sensing is very susceptible to noise from the surroundings. One of the main noise sources is power-line noise, which acts as a common-mode voltage at the input terminals of the acquisition unit. The origin and methods of noise reduction are described on electric models. Two methods of noise removal are modeled and experimentally verified in the paper. The first method uses a passive capacitive grounding electrode, and the second uses an active capacitive Driven Right Leg (DRL) electrode. The effect of grounding electrode size on noise suppression is experimentally investigated. The increasing electrode area reduces power-line noise: the power of power-line frequency within the measured signal is 70.96 dB, 59.13 dB, and 43.44 dB for a grounding electrode area of 1650 cm2, 3300 cm2, and 4950 cm2, respectively. The capacitive DRL electrode shows better efficiency in common-mode noise rejection than the grounding electrode. When using an electrode area of 1650 cm2, the DRL achieved 46.3 dB better attenuation than the grounding electrode at power-line frequency. In contrast to the grounding electrode, the DRL electrode reduces a capacitive measurement system's financial costs due to the smaller electrode area made of the costly conductive textile.

4.
Sensors (Basel) ; 20(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331326

RESUMO

This article introduces a two-electrode ground-free electrocardiogram (ECG) with minimal hardware complexity, which is ideal for wearable battery-powered devices. The main issue of ground-free measurements is the presence of noise. Therefore, noise suppression methods that can be employed for a two-electrode ECG acquisition system are discussed in detail. Experimental measurements of a living subject and patient simulator are used to investigate and compare the performance of the three proposed methods utilizing the ADS1191 analogue front-end for biopotential measurements. The resulting signals recorded for the simulator indicate that all three methods should be suitable for suppressing power-line noise. The Power Spectral Density (PSD) of the signals measured for a subject exhibits differences across methods; the signal power at 50 Hz is -28, -24.8, and -26 dB for the first, second, and third method, respectively. The digital postprocessing of measured signals acquired a high-quality ECG signal comparable to that of three-electrode sensing. The current consumption measurements demonstrate that all proposed two-electrode ECG solutions are appropriate as a battery-powered device (current consumption < 1.5 mA; sampling rate of 500 SPS). The first method, according to the results, is considered the most effective method in the suppression of power-line noise, current consumption, and hardware complexity.


Assuntos
Eletrocardiografia/métodos , Eletrodos , Algoritmos , Humanos , Dispositivos Eletrônicos Vestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...