Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pancreatol ; 7(1): 35-44, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38524856

RESUMO

Abdominal pain is the most common symptom of chronic pancreatitis (CP) and is often debilitating for patients and very difficult to treat. To date, there exists no cure for the disease. Treatment strategies focus on symptom management and on mitigation of disease progression by reducing toxin exposure and avoiding recurrent inflammatory events. Traditional treatment protocols start with medical management followed by consideration of procedural or surgical intervention on selected patients with severe and persistent pain. The incorporation of adjuvant therapies to treat comorbidities including psychiatric disorders, exocrine pancreatic insufficiency, mineral bone disease, frailty, and malnutrition, are in its early stages. Recent clinical studies and animal models have been designed to improve investigation into the pathophysiology of CP pain, as well as to improve pain management. Despite the array of tools available, many therapeutic options for the management of CP pain provide incomplete relief. There still remains much to discover about the neural regulation of pancreas-related pain. In this review, we will discuss research from the last 5 years that has provided new insights into novel methods of pain phenotyping and the pathophysiology of CP pain. These discoveries have led to improvements in patient selection for optimization of outcomes for both medical and procedural management, and identification of potential future therapies.

2.
Brain Behav Immun ; 106: 233-246, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089217

RESUMO

PDL1 is a protein that induces immunosuppression by binding to PD1 expressed on immune cells. In line with historical studies, we found that membrane-bound PD1 expression was largely restricted to immune cells; PD1 was not detectable at either the mRNA or protein level in peripheral neurons using single neuron qPCR, immunolabeling and flow cytometry. However, we observed widespread expression of PDL1 in both sensory and sympathetic neurons that could have important implications for patients receiving immunotherapies targeting this pathway that include unexpected autonomic and sensory related effects. While signaling pathways downstream of PD1 are well established, little to no information is available regarding the intracellular signaling downstream of membrane-bound PDL1 (also known as reverse signaling). Here, we administered soluble PD1 to engage neuronally expressed PDL1 and found that PD1 significantly reduced nocifensive behaviors evoked by algogenic capsaicin. We used calcium imaging to examine the underlying neural mechanism of this reduction and found that exogenous PD1 diminished TRPV1-dependent calcium transients in dissociated sensory neurons. Furthermore, we observed a reduction in membrane expression of TRPV1 following administration of PD1. Exogenous PD1 had no effect on pain-related behaviors in sensory neuron specific PDL1 knockout mice. These data indicate that neuronal PDL1 activation is sufficient to modulate sensitivity to noxious stimuli and as such, may be an important homeostatic mechanism for regulating acute nociception.


Assuntos
Antígeno B7-H1 , Nociceptividade , Animais , Antígeno B7-H1/metabolismo , Cálcio , Capsaicina , Camundongos , RNA Mensageiro
3.
Biomed Eng Online ; 20(1): 30, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766034

RESUMO

BACKGROUND: The regulation and control of pressure stimuli is useful for many studies of pain and nociception especially those in the visceral pain field. In many in vivo experiments, distinct air and liquid stimuli at varying pressures are delivered to hollow organs such as the bladder, vagina, and colon. These stimuli are coupled with behavioral, molecular, or physiological read-outs of the response to the stimulus. Care must be taken to deliver precise timed stimuli during experimentation. For example, stimuli signals can be used online to precisely time-lock the stimulus with a physiological output. Such precision requires the development of specialized hardware to control the stimulus (e.g., air) while providing a precise read-out of pressure and stimulus signal markers. METHODS: In this study, we designed a timed pressure regulator [termed visceral pressure stimulator (VPS)] to control air flow, measure pressure (in mmHg), and send stimuli markers to online software. The device was built using a simple circuit and primarily off-the-shelf parts. A separate custom inline analog-to-digital pressure converter was used to validate the real pressure output of the VPS. RESULTS: Using commercial physiological software (Spike2, CED), we were able to measure mouse bladder pressure continuously during delivery of unique air stimulus trials in a mouse while simultaneously recording an electromyogram (EMG) of the overlying abdominal muscles. CONCLUSIONS: This device will be useful for those who need to (1) deliver distinct pressure stimuli while (2) measuring the pressure in real-time and (3) monitoring stimulus on-off using physiological software.


Assuntos
Colo/diagnóstico por imagem , Eletromiografia , Bexiga Urinária/diagnóstico por imagem , Vagina/diagnóstico por imagem , Animais , Feminino , Camundongos , Projetos Piloto , Pressão , Processamento de Sinais Assistido por Computador , Software , Dor Visceral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...