Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Expo Sci Environ Epidemiol ; 33(3): 358-367, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36450925

RESUMO

BACKGROUND: Residential environments are known to contribute to asthma. OBJECTIVE: To examine the joint impacts of exposures to residential indoor and outdoor air pollutants and housing risk factors on adult asthma-related health outcomes. METHODS: We analyzed >1-year of data from 53 participants from 41 homes in the pre-intervention period of the Breathe Easy Project prior to ventilation and filtration retrofits. Health outcomes included surveys of asthma control, health-related quality of life, stress, and healthcare utilizations. Environmental assessments included quarterly measurements of indoor and outdoor pollutants (e.g., HCHO, CO, CO2, NO2, O3, and PM), home walk-throughs, and surveys of environmental risk factors. Indoor pollutant concentrations were also matched with surveys of time spent at home to estimate indoor pollutant exposures. RESULTS: Cross-sectional analyses using mixed-effects models indicated that lower annual average asthma control test (ACT) scores were associated (p < 0.05) with higher indoor NO2 (concentration/exposure: ß = -2.42/-1.57), indoor temperature (ß = -1.03 to -0.94), and mold/dampness (ß = -3.09 to -2.41). In longitudinal analysis, lower ACT scores were also associated (p < 0.05) with higher indoor NO2 concentrations (ß = -0.29), PM1 (concentration/exposure: ß = -0.12/-0.24), PM2.5 (concentration/exposure: ß = -0.12/-0.26), and PM10 (concentration/exposure: ß = 10.14/-0.28). Emergency department visits were associated with poorer asthma control [incidence rate ratio (IRR) = 0.84; p < 0.001], physical health (IRR = 0.95; p < 0.05), mental health (IRR = 0.95; p < 0.05), higher I/O NO2 ratios (IRR = 1.30; p < 0.05), and higher indoor temperatures (IRR = 1.41; p < 0.05). SIGNIFICANCE: Findings suggest that residential risk factors, including indoor air pollution (especially NO2 and particulate matter), higher indoor temperature, and mold/dampness, may contribute to poorer asthma control. IMPACT: This study highlights the importance of residential indoor air quality and environmental risk factors for asthma control, health-related quality of life, and emergency department visits for asthma. Two timescales of mixed models suggest that exposure to indoor NO2 and particulate matter, higher indoor temperature, and mold/dampness was associated with poorer asthma control. Additionally, emergency department visits were associated with poorer asthma control and health-related quality of life, as well as higher I/O NO2 ratios and indoor temperatures. These findings deepen our understanding of the interrelationships between housing, air quality, and health, and have important implications for programs and policy.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Asma , Adulto , Humanos , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Qualidade de Vida , Chicago , Estudos Transversais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Asma/epidemiologia , Asma/induzido quimicamente , Material Particulado/efeitos adversos , Material Particulado/análise , Fatores de Risco , Avaliação de Resultados em Cuidados de Saúde
2.
Sci Total Environ ; 804: 150129, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798726

RESUMO

Mechanical ventilation systems are used in residences to introduce ventilation air and dilute indoor-generated pollutants. A variety of ventilation system types can be used in home retrofits, influencing indoor air quality (IAQ) in different ways. Here we describe the Breathe Easy Project, a >2-year longitudinal, pseudo-randomized, crossover study designed to assess IAQ and adult asthma outcomes before and after installing residential mechanical ventilation systems in 40 existing homes in Chicago, IL. Each home received one of three types of ventilation systems: continuous exhaust-only, intermittent powered central-fan-integrated-supply (CFIS), or continuous balanced system with an energy recovery ventilator (ERV). Homes with central heating and/or cooling systems also received MERV 10 filter replacements. Approximately weeklong field measurements were conducted at each home on a quarterly basis throughout the study to monitor environmental conditions, ventilation operation, and indoor and outdoor pollutants, including size-resolved particles (0.3-10 µm), ozone (O3), nitrogen dioxide (NO2), carbon dioxide (CO2), carbon monoxide (CO), and indoor formaldehyde (HCHO). Mean reductions in indoor/outdoor (I/O) ratios across all systems after the intervention were approximately 12% (p = 0.001), 10% (p = 0.008), 42% (p < 0.001), 39% (p = 0.002), and 33% (p = 0.007), for CO2, NO2, and estimated PM1, PM2.5, and PM10, respectively. There was a reduction in I/O ratios for all measured constituents with each type of system, on average, but with varying magnitude and levels of statistical significance. The magnitudes of mean differences in I/O pollutant concentrations ratios were generally largest for most pollutants in the homes that received continuous balanced with ERV and smallest in the homes that received intermittent CFIS systems, with apparent benefits to providing ventilation continuously rather than intermittently. All ventilation system types maintained similar indoor temperatures during pre- and post-intervention periods.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Chicago , Estudos Cross-Over , Humanos , Respiração Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...