Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(6): 1717-1725, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684585

RESUMO

Antibiotics, which have been used for many years to treat infections, also play an important role in food contamination with antibiotic residues. There is also unnecessary use of antibiotics, particularly to increase production efficiency. Non-compliance with withdrawal periods and maximum residue limits (MRLs) for antibiotics used in food-producing animals results in undesirable events, such as allergic reactions, teratogenicity, carcinogenicity, changes in the microbiota and, in particular, antibiotic resistance. Therefore, it may be useful to avoid unnecessary use of antibiotics, to limit the use of antibiotics and to turn to alternatives that can be used instead of antibiotics. The aim of this review is to provide information on the undesirable effects of antibiotic residues in food-producing organisms and in the environment, their determination, and the precautions that can be taken.


Assuntos
Antibacterianos , Resíduos de Drogas , Contaminação de Alimentos , Antibacterianos/toxicidade , Contaminação de Alimentos/análise , Animais , Resíduos de Drogas/análise , Resíduos de Drogas/toxicidade , Humanos
2.
J Photochem Photobiol B ; 253: 112889, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492477

RESUMO

One of the studies on new drug delivery and release systems that has increased in recent years is the study using plasmonic nanoparticles. In this study, polydopamine nanoparticles (PDOP NPs), which contribute to photothermal drug release by near infrared radiation (NIR), were decorated with gold nanoparticles (AuNPs) to utilize their plasmonic properties, and a core-satellite-like system was formed. With this approach, epirubicin (EPI)-loaded PDOP NPs were prepared by utilizing the plasmonic properties of AuNPs. Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) methods were used to evaluate the structural properties of these particles. The release behavior of the prepared structures in acidic (pH 5.0) and neutral (pH 7.4) environments based on the ON/OFF approach was also examined. The biocompatibility properties of the particles were evaluated on mouse fibroblast (L929) and anticancer activities on neuroblastoma (SH-SY5Y) cells. The effects of prepared EPI-loaded particles and laser-controlled drug release on ROS production, genotoxicity, and apoptosis were also investigated in SH-SY5Y cells. With the calculated combination index (CI) value, it was shown that the activity of EPI-loaded AuNP@PDOP NPs increased synergistically with the ON/OFF-based approach. The developed combination approach is considered to be remarkable and promising for further evaluation before clinical use.


Assuntos
Indóis , Nanopartículas , Neuroblastoma , Polímeros , Animais , Humanos , Camundongos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Epirubicina/farmacologia , Ouro/química , Nanopartículas Metálicas/toxicidade , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...