Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 29(4): 572-585.e8, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-34265272

RESUMO

The optimal use of many cancer drugs is hampered by a lack of detailed understanding of their mechanism of action (MoA). Here, we apply a high-resolution implementation of the proteome-wide cellular thermal shift assay (CETSA) to follow protein interaction changes induced by the antimetabolite 5-fluorouracil (5-FU) and related nucleosides. We confirm anticipated effects on the known main target, thymidylate synthase (TYMS), and enzymes in pyrimidine metabolism and DNA damage pathways. However, most interaction changes we see are for proteins previously not associated with the MoA of 5-FU, including wide-ranging effects on RNA-modification and -processing pathways. Attenuated responses of specific proteins in a resistant cell model identify key components of the 5-FU MoA, where intriguingly the abrogation of TYMS inhibition is not required for cell proliferation.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Proteoma , Proteômica , RNA
2.
Sci Rep ; 9(1): 19384, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852908

RESUMO

The use of taxanes has for decades been crucial for treatment of several cancers. A major limitation of these therapies is inherent or acquired drug resistance. A key to improved outcome of taxane-based therapies is to develop tools to predict and monitor drug efficacy and resistance in the clinical setting allowing for treatment and dose stratification for individual patients. To assess treatment efficacy up to the level of drug target engagement, we have established several formats of tubulin-specific Cellular Thermal Shift Assays (CETSAs). This technique was evaluated in breast and prostate cancer models and in a cohort of breast cancer patients. Here we show that taxanes induce significant CETSA shifts in cell lines as well as in animal models including patient-derived xenograft (PDX) models. Furthermore, isothermal dose response CETSA measurements allowed for drugs to be rapidly ranked according to their reported potency. Using multidrug resistant cancer cell lines and taxane-resistant PDX models we demonstrate that CETSA can identify taxane resistance up to the level of target engagement. An imaging-based CETSA format was also established, which in principle allows for taxane target engagement to be accessed in specific cell types in complex cell mixtures. Using a highly sensitive implementation of CETSA, we measured target engagement in fine needle aspirates from breast cancer patients, revealing a range of different sensitivities. Together, our data support that CETSA is a robust tool for assessing taxane target engagement in preclinical models and clinical material and therefore should be evaluated as a prognostic tool during taxane-based therapies.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Taxoides/farmacologia , Tubulina (Proteína)/genética , Biomarcadores Tumorais/genética , Biópsia por Agulha Fina/métodos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Feminino , Xenoenxertos , Humanos , Células MCF-7 , Masculino , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Taxoides/efeitos adversos
3.
Annu Rev Biochem ; 88: 383-408, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30939043

RESUMO

The cellular thermal shift assay (CETSA) is a biophysical technique allowing direct studies of ligand binding to proteins in cells and tissues. The proteome-wide implementation of CETSA with mass spectrometry detection (MS-CETSA) has now been successfully applied to discover targets for orphan clinical drugs and hits from phenotypic screens, to identify off-targets, and to explain poly-pharmacology and drug toxicity. Highly sensitive multidimensional MS-CETSA implementations can now also access binding of physiological ligands to proteins, such as metabolites, nucleic acids, and other proteins. MS-CETSA can thereby provide comprehensive information on modulations of protein interaction states in cellular processes, including downstream effects of drugs and transitions between different physiological cell states. Such horizontal information on ligandmodulation in cells is largely orthogonal to vertical information on the levels of different proteins and therefore opens novel opportunities to understand operational aspects of cellular proteomes.


Assuntos
Desenvolvimento de Medicamentos/métodos , Proteoma/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Ligantes , Espectrometria de Massas , Ligação Proteica , Proteoma/química , Proteômica
4.
PLoS One ; 12(3): e0173888, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28323844

RESUMO

Fe65 is an adaptor protein involved in both processing and signaling of the Alzheimer-associated amyloid-ß precursor protein, APP. Here, the subcellular localization was further investigated using TAP-tagged Fe65 constructs expressed in human neuroblastoma cells. Our results indicate that PTB2 rather than the WW domain is important for the nuclear localization of Fe65. Electrophoretic mobility shift of Fe65 caused by phosphorylation was not detected in the nuclear fraction, suggesting that phosphorylation could restrict nuclear localization of Fe65. Furthermore, both ADAM10 and γ-secretase inhibitors decreased nuclear Fe65 in a similar way indicating an important role also of α-secretase in regulating nuclear translocation.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteína ADAM10/antagonistas & inibidores , Proteína ADAM10/metabolismo , Transporte Ativo do Núcleo Celular , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Linhagem Celular , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Mutagênese , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência
5.
Neurosci Lett ; 613: 54-9, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26742640

RESUMO

Fe65 is a brain enriched multi domain adaptor protein involved in diverse cellular functions. One of its binding partners is the amyloid-ß (Aß) precursor protein (APP), which after sequential proteolytic processing by secretases gives rise to the Alzheimer's Aß peptide. Fe65 binds to the APP intracellular domain (AICD). Several studies have indicated that Fe65 binding promotes the amyloidogenic processing of APP. It has previously been shown that expression of APP increases concomitantly with a shift of its processing to the non-amyloidogenic pathway during neuronal differentiation. In this study we wanted to investigate the effects of neuronal differentiation on Fe65 expression. We observed that differentiation of SH-SY5Y human neuroblastoma cells induced by retinoic acid (RA), the phorbol ester PMA, or the γ-secretase inhibitor DAPT resulted in an electrophoretic mobility shift of Fe65. Similar effects were observed in rat PC6.3 cells treated with nerve growth factor. The electrophoretic mobility shift was shown to be due to phosphorylation. Previous studies have shown that Fe65 phosphorylation can prevent the APP-Fe65 interaction. We propose that phosphorylation is a way to modify the functions of Fe65 and to promote the non-amyloidogenic processing of APP during neuronal differentiation.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Dipeptídeos/farmacologia , Humanos , Neurônios/efeitos dos fármacos , Fluoreto de Fenilmetilsulfonil/farmacologia , Fosforilação , Acetato de Tetradecanoilforbol/farmacologia , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...