Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970456

RESUMO

Perineuronal nets (PNN) are highly specialized structures of the extracellular matrix around specific groups of neurons in the central nervous system (CNS). They play functions related to optimizing physiological processes and protection neurons against harmful stimuli. Traditionally, their existence was only described in the CNS. However, there was no description of the presence and composition of PNN in the enteric nervous system (ENS) until now. Thus, our aim was to demonstrate the presence and characterize the components of the PNN in the enteric nervous system. Samples of intestinal tissue from mice and humans were analyzed by RT-PCR and immunofluorescence assays. We used a marker (Wisteria floribunda agglutinin) considered as standard for detecting the presence of PNN in the CNS and antibodies for labeling members of the four main PNN-related protein families in the CNS. Our results demonstrated the presence of components of PNN in the ENS of both species; however its molecular composition is species-specific.

2.
J Physiol ; 597(6): 1503-1515, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30605228

RESUMO

KEY POINTS: Tenascin X (TNX) functions in the extracellular matrix of skin and joints where it maintains correct intercellular connections and tissue architecture TNX is associated exclusively with vagal-afferent endings and some myenteric neurones in mouse and human stomach, respectively. TNX-deficient mice have accelerated gastric emptying and hypersensitivity of gastric vagal mechanoreceptors that can be normalized by an inhibitor of vagal-afferent sensitivity. Cultured nodose ganglion neurones showed no changes in response to capsaicin, cholecystokinin and potassium chloride in TNX-deficient mice. TNX-deficient patients have upper gastric dysfunction consistent with those in a mouse model. Our translational studies suggest that abnormal gastric sensory function may explain the upper gut symptoms present in TNX deficient patients, thus making it important to study gastric physiology. TNX deficiency should be evaluated routinely in patients with connective tissue abnormalities, which will enable a better understanding of its role and allow targeted treatment. For example, inhibitors of vagal afferents-baclofen could be beneficial in patients. These hypotheses need confirmation via targeted clinical trials. ABSTRACT: Tenascin-X (TNX) is a glycoprotein that regulates tissue structure via anti-adhesive interactions with collagen in the extracellular matrix. TNX deficiency causes a phenotype similar to hypermobility Ehlers-Danlos syndrome involving joint hypermobility, skin hyperelasticity, pain and gastrointestinal dysfunction. Previously, we have shown that TNX is required for neural control of the bowel by a specific subtype of mainly cholinergic enteric neurones and regulates sprouting and sensitivity of nociceptive sensory endings in mouse colon. These findings correlate with symptoms shown by TNX-deficient patients and mice. We aimed to identify whether TNX is similarly present in neural structures found in mouse and human gastric tissue. We then determined whether TNX has a functional role, specifically in gastric motor and sensory function and nodose ganglia neurones. We report that TNX was present in calretinin-immunoreactive extrinsic nerve endings in mouse and human stomach. TNX deficient mice had accelerated gastric emptying and markedly increased vagal afferent responses to gastric distension that could be rescued with GABAB receptor agonist. There were no changes in nodose ganglia excitability in TNX deficient mice, suggesting that vagal afferent responses are probably the result of altered peripheral mechanosensitivity. In TNXB-deficient patients, significantly greater symptoms of reflux, indigestion and abdominal pain were reported. In the present study, we report the first role for TNX in gastric function. Further studies are required in TNX deficient patients to determine whether symptoms can be relieved using GABAB agonists.


Assuntos
Síndrome de Ehlers-Danlos/genética , Esvaziamento Gástrico , Estômago/fisiologia , Tenascina/genética , Animais , Células Cultivadas , Síndrome de Ehlers-Danlos/fisiopatologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neurônios Aferentes/metabolismo , Neurônios Aferentes/fisiologia , Gânglio Nodoso/citologia , Gânglio Nodoso/metabolismo , Gânglio Nodoso/fisiologia , Estômago/fisiopatologia , Tenascina/metabolismo , Nervo Vago/metabolismo , Nervo Vago/fisiologia
3.
Behav Brain Res ; 337: 173-182, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28919157

RESUMO

We originally reported that an ethyl-acetate fraction (EAF) of Trichilia catigua prevented the impairment of water maze learning and hippocampal neurodegeneration after transient global cerebral (TGCI) in mice. We extended that previous study by evaluating whether T. catigua (i) prevents the loss of long-term retrograde memory assessed in the aversive radial maze (AvRM), (ii) confers hippocampal and cortical neuroprotection, and (iii) mitigates oxidative stress and neuroinflammation in rats that are subjected to the four vessel occlusion (4-VO) model of TGCI. In the first experiment, naive rats were trained in the AvRM and then subjected to TGCI. The EAF was administered orally 30min before and 1h after TGCI, and administration continued once per day for 7days post-ischemia. In the second experiment, the EAF was administered 30min before and 1h after TGCI, and protein carbonylation and myeloperoxidase (MPO) activity were assayed 24h and 5days later, respectively. Retrograde memory performance was assessed 8, 15, and 21days post-ischemia. Ischemia caused persistent retrograde amnesia, and this effect was prevented by T. catigua. This memory protection (or preservation) persisted even after the treatment was discontinued, despite the absence of histological neuroprotection. Protein carbonyl group content and MPO activity increased around 43% and 100%, respectively, after TGCI, which were abolished by the EAF of T. catigua. The administration of EAF did not coincide with the days of memory testing. The data indicate that antioxidant and/or antiinflammatory actions in the early phase of ischemia/reperfusion contribute to the long-term antiamnesic effect of T. catigua.


Assuntos
Amnésia Retrógrada/tratamento farmacológico , Amnésia Retrógrada/etiologia , Isquemia Encefálica/complicações , Inflamação/tratamento farmacológico , Inflamação/etiologia , Meliaceae/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Animais , Biomarcadores/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Extratos Vegetais/química , Ratos
4.
Physiol Behav ; 177: 196-207, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28483394

RESUMO

A series of our previous studies demonstrated that fish oil (FO), equivalent to 300mg/kg docosahexahenoic acid (DHA), facilitates memory recovery after transient, global cerebral ischemia (TGCI) in the aversive radial maze (AvRM). The present study sought to address two main issues: (i) whether the memory-protective effect of FO that has been observed in the AvRM can be replicated in the passive avoidance test (PAT) and object location test (OLT) and (ii) whether FO at doses that are lower than those used previously can also prevent TGCI-induced memory loss. In Experiment 1, naive rats were trained in the PAT, subjected to TGCI (4-vessel occlusion model), and tested for retrograde memory performance 8 and 15days after ischemia. Fish oil (300mg/kg/day DHA) was given orally for 8days. The first dose was delivered 4h postischemia. In Experiment 2, the rats were subjected to TGCI, treated with the same FO regimen, and then trained and tested in the OLT. In Experiment 3, the rats were trained in the AvRM, subjected to TGCI, administered FO (100, 200, and 300mg/kg DHA), and tested for memory performance up to 3weeks after TGCI. At the end of the behavioral tests, the brains were examined for neurodegeneration and neuroblast proliferation. All of the behavioral tests (PAT, OLT, and AvRM) were sensitive to ischemia, but only the AvRM was able to detect the memory-protective effect of FO. Ischemia-induced neurodegeneration and neuroblast proliferation were unaffected by FO treatment. These results suggest that (i) the beneficial effect of FO on memory recovery after TGCI is task-dependent, (ii) doses of FO<300mg/kg DHA can protect memory function in the radial maze, and (iii) cognitive recovery occurs in the absence of neuronal rescue and/or hippocampal neurogenesis.


Assuntos
Óleos de Peixe/farmacologia , Hipocampo/efeitos dos fármacos , Ataque Isquêmico Transitório/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/patologia , Modelos Animais de Doenças , Hipocampo/patologia , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/psicologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/psicologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia
5.
Behav Brain Res ; 311: 425-439, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27235715

RESUMO

We reported that fish oil (FO) prevented the loss of spatial memory caused by transient, global cerebral ischemia (TGCI), provided the treatment covered the first days prior to and after ischemia. Continuing these studies, trained rats were subjected to TGCI, and FO was administered for 10days, with a time window of efficacy (TWE) of 4, 8 or 12h post-ischemia. Retrograde memory was assessed up to 43days after TGCI. In another experiment, ischemic rats received FO with a 4- or 12-h TWE, and dendritic density was assessed in the hippocampus and cerebral cortex. The brain lipid profile was evaluated in sham-operated and ischemic rats that were treated with FO or vehicle with a 4-h TWE. Ischemia-induced retrograde amnesia was prevented by FO administration that was initiated with either a 4- or 8-h TWE. Fish oil was ineffective after a 12-h TWE. Independent of the TWE, FO did not prevent ischemic neuronal death. In the hippocampus, but not cerebral cortex, TGCI-induced dendritic loss was prevented by FO with a 4-h TWE but not 12-h TWE. The level of docosahexaenoic acid almost doubled in the hippocampus in ischemic, FO-treated rats (4-h TWE). The data indicate that (i) the anti-amnesic effect of FO can be observed with a TWE of up to 8h, (ii) the stimulation of dendritic neuroplasticity may have contributed to this effect, and (iii) DHA in FO may be the main active constituent in FO that mediates the cognitive and neuroplasticity effects on TGCI.


Assuntos
Dendritos/efeitos dos fármacos , Óleos de Peixe/administração & dosagem , Hipocampo/efeitos dos fármacos , Ataque Isquêmico Transitório/tratamento farmacológico , Memória de Longo Prazo/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Amnésia Retrógrada/tratamento farmacológico , Amnésia Retrógrada/etiologia , Amnésia Retrógrada/metabolismo , Amnésia Retrógrada/patologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/psicologia , Masculino , Memória de Longo Prazo/fisiologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/psicologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Nootrópicos/administração & dosagem , Ratos Wistar , Fatores de Tempo
6.
CNS Neurol Disord Drug Targets ; 14(3): 400-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25714977

RESUMO

Transient, global cerebral ischemia (TGCI) causes hippocampal/cortical damage and the persistent loss of welltrained, long-term memory (retrograde amnesia). Fish oil (FO), a rich source of omega-3 polyunsaturated fatty acids, abolishes such amnesia in the absence of neurohistological protection. The present study investigated whether FO prevents ischemia-induced oxidative stress and whether such an action contributes to the lasting effect of FO on memory recovery. In a first experiment, FO was administered for 4 days prior to ischemia, and antioxidant status was subsequently measured after 24 h of reperfusion. In another experiment, naive rats were trained in an eight-arm radial maze until they achieved asymptotic performance and then subjected to TGCI. One group of rats received FO as in the first experiment (i.e., 4 days prior to ischemia), whereas another group received FO for 4 days prior to ischemia plus 6 days postischemia. Retrograde memory performance was assessed 2-5 weeks after ischemia. TGCI depleted the level of antioxidant enzymes and increased the amount of protein carbonylation, indicating oxidative damage. Fish oil reversed oxidative damage to control levels. The same treatment that attenuated oxidative stress after 24 h of reperfusion also prevented retrograde amnesia assessed several weeks later. This antiamnesic effect afforded by short preischemia treatment was comparable to 10 days of treatment but not as consistent. These data indicate that an antioxidant action in the hyperacute phase of ischemia/reperfusion may contribute to the long-term, antiamnesic effect of FO.


Assuntos
Óleos de Peixe/administração & dosagem , Ataque Isquêmico Transitório/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Estresse Oxidativo/fisiologia , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia
7.
Behav Brain Res ; 283: 61-8, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25623419

RESUMO

We previously reported that the phosphodiesterase-5 (PDE5) inhibitor sildenafil prevented neurodegeneration but not learning deficits in middle-aged rats that were subjected to the permanent, three-stage, four-vessel occlusion/internal carotid artery (4-VO/ICA) model of chronic cerebral hypoperfusion (CCH). In the present study, we examined whether the PDE3 inhibitor cilostazol alleviates the loss of long-term memory (i.e., retrograde amnesia) caused by CCH. The effect of sildenafil was then compared to cilostazol. Naive rats (12-15 months old) were trained in a non-food-rewarded eight-arm radial maze and subjected to CCH. One week later, retrograde memory was assessed for 5 weeks. Cilostazol (50mg/kg, p.o.) was administered for 42 days or 15 days, beginning approximately 45 min after the first occlusion stage. Sildenafil (3mg/kg, p.o.) was similarly administered for 15 days only. Histological examination was performed after behavioral testing. Chronic cerebral hypoperfusion caused persistent retrograde amnesia, which was reversed by cilostazol after both short-term and long-term treatment. This antiamnesic effect of cilostazol was sustained throughout the experiment, even after discontinuing treatment (15-day treatment group). This effect occurred in the absence of neuronal rescue. Sildenafil failed to prevent CCH-induced retrograde amnesia, but it reduced hippocampal cell death. Extending previous findings from this laboratory, we conclude that sildenafil does not afford memory recovery after CCH, despite its neuroprotective effect. In contrast, cilostazol abolished CCH-induced retrograde amnesia, an effect that may not depend on histological neuroprotection. The present data suggest that cilostazol but not sildenafil represents a potential strategy for the treatment of cognitive sequelae associated with CCH.


Assuntos
Amnésia Retrógrada/prevenção & controle , Isquemia Encefálica/tratamento farmacológico , Nootrópicos/farmacologia , Citrato de Sildenafila/farmacologia , Tetrazóis/farmacologia , Envelhecimento , Amnésia Retrógrada/patologia , Amnésia Retrógrada/fisiopatologia , Animais , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Doenças das Artérias Carótidas , Artéria Carótida Interna , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Cilostazol , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Fármacos Neuroprotetores/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/patologia , Células Piramidais/fisiologia , Ratos Wistar
8.
Physiol Behav ; 119: 61-71, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23770426

RESUMO

We previously reported that long-term treatment with fish oil (FO) facilitates memory recovery after transient, global cerebral ischemia (TGCI), despite the presence of severe hippocampal damage. The present study tested whether this antiamnesic effect resulted from an action of FO on behavioral performance itself, or whether it resulted from an anti-ischemic action. Different treatment regimens were used that were distinguished from each other by their initiation or duration with regard to the onset of TGCI and memory assessment. Naive rats were trained in an eight-arm radial maze, subjected to TGCI (4-VO model, 15 min), and tested for memory performance up to 6 weeks after TGCI. Fish oil (docosahexaenoic acid, 300 mg/kg/day) was given orally according to one of the following regimens: regimen 1 (from 3 days prior to ischemia until 4 weeks post-ischemia), regimen 2 (from 3 days prior to ischemia until 1 week post-ischemia), and regimen 3 (from week 2 to week 5 post-ischemia). When administered according to regimens 1 and 2, FO abolished amnesia completely. This effect persisted for at least 5 weeks after discontinuing the treatment. Such an effect did not occur, however, in the group treated according to regimen 3. Hippocampal and cortical damage was not alleviated by FO. The present results demonstrate that FO-mediated memory recovery (or preservation) following TGCI is a reproducible, robust, and long-lasting effect. Moreover, such an effect was found with a relatively short period of treatment, provided it covered the first days prior to and after ischemia. This suggests that FO prevented amnesia by changing some acute, ischemia/reperfusion-triggered process and not by stimulating memory performance on its own.


Assuntos
Ácidos Docosa-Hexaenoicos/uso terapêutico , Ataque Isquêmico Transitório/dietoterapia , Transtornos da Memória/dietoterapia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Esquema de Medicação , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/complicações , Transtornos da Memória/patologia , Degeneração Neural/dietoterapia , Degeneração Neural/patologia , Ratos
9.
Behav Brain Res ; 252: 214-21, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23727150

RESUMO

Chronic cerebral hypoperfusion (CCH) may be a prodromal feature of aging-related dementias, and chronic hypertension is a major risk factor. We used a permanent, four-vessel occlusion/internal carotid artery (4-VO/ICA) model to evaluate the cognitive and neurohistological outcomes of CCH in both young and middle-aged rats. Young rats are asymptomatic after permanent 4-VO/ICA, and we tested the hypothesis that chronic hypertension aggravates the outcomes of CCH. Young normotensive rats (NTRs) and young spontaneously hypertensive rats (SHRs) were first subjected to 4-VO/ICA and then examined for hippocampal and cortical neurodegeneration 7, 15, and 30 days later. In a second experiment, both NTRs and SHRs were then trained in a modified, non-food-rewarded aversive radial maze (AvRM) task until acquiring asymptotic performance and then subjected to 4-VO/ICA. Thirty days later, they were assessed for memory retention of the previously acquired cognition. In a third, post hoc experiment, middle-aged NTRs were trained in the AvRM, subjected to 4-VO/ICA, and tested for memory retention 30 days later. Compared with NTRs, both SHRs and middle-aged NRTs had severe hippocampal and cortical damage, but they did not differ from each other, regardless of the chronicity of 4-VO/ICA. In contrast, NTRs were behaviorally asymptomatic, and retrograde memory performance was persistently impaired in SHRs. This amnesic effect in the SHR group was very similar to the middle-aged NTR group. These findings suggest that chronic hypertension deteriorates the capacity of the brain to adaptively respond to CCH. This influence of hypertension may parallel the effect of aging.


Assuntos
Amnésia Retrógrada/etiologia , Doenças das Artérias Carótidas/complicações , Doenças das Artérias Carótidas/patologia , Artéria Carótida Interna/patologia , Doenças Neurodegenerativas/etiologia , Fatores Etários , Análise de Variância , Animais , Pressão Sanguínea/fisiologia , Doenças das Artérias Carótidas/mortalidade , Córtex Cerebral/patologia , Doença Crônica , Modelos Animais de Doenças , Hipocampo/patologia , Doenças Neurodegenerativas/patologia , Ratos , Ratos Endogâmicos SHR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...