Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Biomed Sci ; 80: 11462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701073

RESUMO

Cryptosporidium, the most frequently reported parasite in Scotland, causes gastrointestinal illness resulting in diarrhoea, nausea and cramps. Two species are responsible for most cases: Cryptosporidium hominis (C. hominis) and Cryptosporidium parvum (C. parvum). Transmission occurs faecal-orally, through ingestion of contaminated food and water, or direct contact with faeces. In 2020, the COVID-19 pandemic led to global restrictions, including national lockdowns to limit viral transmission. Such interventions led to decreased social mixing, and reduced/no local and international travel, which are factors associated with transmission of multiple communicable diseases, including cryptosporidiosis. This report assessed the impact of the pandemic on Scottish cryptosporidiosis cases, and identified changes in circulating molecular variants of Cryptosporidium species. Molecular data generated using real time PCR and GP60 nested-PCR assays on laboratory-confirmed cryptosporidiosis cases reported during 2018-22 were analysed. The Scottish Microbiology Reference Laboratories (SMiRL), Glasgow, received 774 Cryptosporidium-positive faeces during 2018-22, of which 486 samples were successfully subtyped. During this time period, C. hominis (n = 155; 21%) and C. parvum (n = 572; 77%) were the most commonly detected species. The total number of cases during 2020, which was greatly affected by the pandemic, was markedly lower in comparison to case numbers in the 2 years before and after 2020. The most predominant C. hominis family detected prior to 2020 was the Ib family which shifted to the Ie family during 2022. The most common C. parvum variant during 2018-22 was the IIa family, however a rise in the IId family was observed (n = 6 in 2018 to n = 25 in 2022). The dominant C. hominis subtype IbA10G2, which accounted for 71% of C. hominis subtypes in 2018-19 was superseded by three rare subtypes: IeA11G3T3 (n = 15), IdA16 (n = 8) and IbA9G3 (n = 3) by 2022. Frequently reported C. parvum subtypes in 2018-19 were IIaA15G2R1 and IIaA17G1R1, accounting for 59% of total C. parvum subtypes. By 2022, IIaA15G2R1 remained the most common (n = 28), however three unusual subtypes in Scotland emerged: IIdA24G1 (n = 7), IIaA16G3R1 (n = 7) and IIaA15G1R2 (n = 7). Continuous monitoring of Cryptosporidium variants following the pandemic will be essential to explore further changes and emergence of strains with altered virulence.


Assuntos
COVID-19 , Criptosporidiose , Cryptosporidium , Humanos , COVID-19/epidemiologia , Criptosporidiose/epidemiologia , Pandemias , Cryptosporidium/genética , Controle de Doenças Transmissíveis , Escócia/epidemiologia
2.
Front Cell Infect Microbiol ; 13: 1236814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600947

RESUMO

Introduction: Cryptosporidiosis is a leading cause of diarrheal-associated morbidity and mortality, predominantly affecting children under 5 years old in low-and-middle-income countries. There is no effective treatment and no vaccine. New therapeutics are emerging from drug discovery efforts. It is critical that mode of action studies are performed alongside drug discovery to ensure the best clinical outcomes. Unfortunately, technology to identify and validate drug targets for Cryptosporidium is severely lacking. Methods: We used C. parvum lysyl-tRNA synthetase (CpKRS) and DDD01510706 as a target-compound pair to develop both chemical and genetic tools for mode of action studies for Cryptosporidium. We adapted thermal proteome profiling (TPP) for Cryptosporidium, an unbiased approach for target identification. Results: Using TPP we identified the molecular target of DDD01510706 and confirm that it is CpKRS. Genetic tools confirm that CpKRS is expressed throughout the life cycle and that this target is essential for parasite survival. Parasites genetically modified to over-express CpKRS or parasites with a mutation at the compound-binding site are resistant to treatment with DDD01510706. We leveraged these mutations to generate a second drug selection marker for genetic modification of Cryptosporidium, KRSR. This second selection marker is interchangeable with the original selection marker, NeoR, and expands the range of reverse genetic approaches available to study parasite biology. Due to the sexual nature of the Cryptosporidium life cycle, parental strains containing different drug selection markers can be crossed in vivo. Discussion: Selection with both drug markers produces highly efficient genetic crosses (>99% hybrid progeny), paving the way for forward genetics approaches in Cryptosporidium.


Assuntos
Criptosporidiose , Cryptosporidium , Lisina-tRNA Ligase , Criança , Humanos , Pré-Escolar , Cryptosporidium/genética , Criptosporidiose/tratamento farmacológico , Lisina-tRNA Ligase/genética , Sítios de Ligação , Diarreia , Propionibacterium acnes
3.
Microorganisms ; 7(11)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671699

RESUMO

The parasite Cryptosporidium parvum represents a threat to livestock health and production, water quality and public health. Cattle are known to be significant reservoirs of C. parvum, but transmission routes are complex and recent studies have implicated the potential role of wildlife in parasite transmission to cattle and water sources. On the Orkney Isles, high densities of Greylag geese (Anser anser) cause widespread faecal contamination of cattle pastures, where cryptosporidiosis is known to be the main cause of neonatal calf diarrhoea and Cryptosporidium contamination frequently occurs in two reservoirs supplying Mainland Orkney's public water. This study aimed to determine the Cryptosporidium species and subtypes present in geese and calves co-grazing on four farms surrounding two reservoirs on Mainland Orkney. Results indicated a high level of C. parvum prevalence in calves, geese and water samples. gp60 analysis illustrated that higher genotypic diversity was present in the goose population compared with calves, but did not yield sequence results for any of the water samples. It can be concluded that the high levels of C. parvum evident in calves, geese and water samples tested represents a significant risk to water quality and public health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...