Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 4739, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179790

RESUMO

The melting of glaciers and ice sheets is nowadays considered a symbol of climate change. Many complex mechanisms are involved in the melting of ice, and, among these processes, surface darkening due to organic material on bare ice has recently received attention from the scientific community. The presence of microbes on glaciers has been shown to decrease the albedo of ice and promote melting. Despite several studies from the Himalaya, Greenland, Andes, and Alaska, no quantitative studies have yet been conducted in the European Alps. In this paper, we made use of DNA sequencing, microscopy and field spectroscopy to describe the nature of glacier algae found at a glacier (Vadret da Morteratsch) of the European Alps and to evaluate their effect on the ice-albedo feedback. Among different algal species identified in the samples, we found a remarkable abundance of Ancylonema nordenskioeldii, a species that has never previously been quantitatively documented in the Alps and that dominates algal blooms on the Greenland Ice Sheet. Our results show that, at the end of the ablation season, the concentration of Ancylonema nordenskioeldii on the glacier surface is higher than that of other algal species (i.e. Mesotaenium berggrenii). Using field spectroscopy data, we identified a significant correlation between a reflectance ratio (750 nm/650 nm) and the algae concentration. This reflectance ratio could be useful for future mapping of glacier algae from remote sensing data exploiting band 6 (740 nm) and band 4 (665 nm) of the MultiSpectral Instrument (MSI) on board Sentinel-2 satellite. Here we show that the biological darkening of glaciers (i.e. the bioalbedo feedback) is also occurring in the European Alps, and thus it is a global process that must be taken into account when considering the positive feedback mechanisms related to glacier melting.

2.
Food Res Int ; 105: 507-516, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29433242

RESUMO

In this work, an Italian extra-virgin olive oil (EVOO) sample and the same sample added with a carotenoid-rich nutraceutical extract from Lycium barbarum L. (EVOOCar) were subjected to a frying process to comparatively assess chemical and physical changes and heat stability. Oxidation progress was monitored by measuring oil quality changes such as peroxide value, free acidity, K232, K268, and fatty acid composition as well as minor compound content, phenols, α-tocopherol, and carotenoids. An UHPLC/QTOF-MS metabolomics approach discriminated the two oil samples based on their chemical changes during frying, identifying also the phenolic classes most exposed to statistically significant variations. Partial least square discriminant analysis and volcano analysis were applied together to identify the most significant markers allowing group separation. The decrease in total phenolic content was lower in EVOOCar than in EVOO during frying. Monounsaturated and polyunsaturated fatty acids showed a significant percentage loss, 3.7% and 17.2%, respectively, in EVOO after 180min frying at 180°C, while they remained constant or slightly changed in EVOOCar. Zeaxanthin added to the oil rapidly decreased during the frying process. These findings showed that the addition of a carotenoid extract from L. barbarum can help to improve the oxidative stability of extra-virgin olive oil.


Assuntos
Carotenoides/química , Culinária/métodos , Manipulação de Alimentos/métodos , Temperatura Alta , Lycium/química , Metabolômica/métodos , Azeite de Oliva/química , Carotenoides/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Ácidos Graxos Insaturados/análise , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Oxirredução , Peróxidos/análise , Fenóis/análise , Fatores de Tempo
3.
Chemosphere ; 176: 273-287, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28273535

RESUMO

In this work we present the isotopic, chemical and dust stratigraphies of two snow pits sampled in 2013/14 at GV7 (coastal East Antarctica: 70°41' S - 158°51' E, 1950 m a.s.l.). A large number of chemical species are measured aiming to study their potentiality as environmental changes markers. Seasonal cluster backward trajectories analysis was performed and compared with chemical marker stratigraphies. Sea spray aerosol is delivered to the sampling site together with snow precipitation especially in autumn-winter by air masses arising from Western Pacific Ocean sector. Dust show maximum concentration in spring when the air masses arising from Ross Sea sector mobilize mineral dust from ice-free areas of the Transantarctic mountains. The clear seasonal pattern of sulfur oxidized compounds allows the dating of the snow-pit and the calculation of the mean accumulation rate, which is 242 ± 71 mm w.e. for the period 2008-2013. Methanesulfonic acid and NO3- do not show any concentration decreasing trend as depth increases, also considering a 12 m firn core record. Therefore these two compounds are not affected by post-depositional processes at this site and can be considered reliable markers for past environmental changes reconstruction. The rBC snow-pit record shows the highest values in summer 2012 likely related to large biomass burning even occurred in Australia in this summer. The undisturbed accumulation rate for this site is demonstrated by the agreement between the chemical stratigraphies and the annual accumulation rate of the two snow-pits analysed in Italian and Korean laboratories.


Assuntos
Poeira/análise , Monitoramento Ambiental/métodos , Camada de Gelo/química , Neve/química , Aerossóis , Regiões Antárticas , Austrália , Isótopos de Oxigênio/análise , Oceano Pacífico , Estações do Ano , Compostos de Enxofre/análise
4.
Sci Rep ; 6: 28162, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27306584

RESUMO

Mineral dust aerosol (dust) is widely recognized as a fundamental component of the climate system and is closely coupled with glacial-interglacial climate oscillations of the Quaternary period. However, the direct impact of dust on the energy balance of the Earth system remains poorly quantified, mainly because of uncertainties in dust radiative properties, which vary greatly over space and time. Here we provide the first direct measurements of the aerosol optical thickness of dust particles windblown to central East Antarctica (Dome C) during the last glacial maximum (LGM) and the Holocene. By applying the Single Particle Extinction and Scattering (SPES) technique and imposing preferential orientation to particles, we derive information on shape from samples of a few thousands of particles. These results highlight that clear shape variations occurring within a few years are hidden to routine measurement techniques. With this novel measurement method the optical properties of airborne dust can be directly measured from ice core samples, and can be used as input into climate model simulations. Based on simulations with an Earth System Model we suggest an effect of particle non-sphericity on dust aerosol optical depth (AOD) of about 30% compared to spheres, and differences in the order of ~10% when considering different combinations of particles shapes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...