Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Psychiatry ; 28(5): 1960-1969, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36604603

RESUMO

Increasing evidence supports a relationship between lipid metabolism and mental health. In particular, the biostatus of polyunsaturated fatty acids (PUFAs) correlates with some symptoms of psychiatric disorders, as well as the efficacy of pharmacological treatments. Recent findings highlight a direct association between brain PUFA levels and dopamine transmission, a major neuromodulatory system implicated in the etiology of psychiatric symptoms. However, the mechanisms underlying this relationship are still unknown. Here we demonstrate that membrane enrichment in the n-3 PUFA docosahexaenoic acid (DHA), potentiates ligand binding to the dopamine D2 receptor (D2R), suggesting that DHA acts as an allosteric modulator of this receptor. Molecular dynamics simulations confirm that DHA has a high preference for interaction with the D2R and show that membrane unsaturation selectively enhances the conformational dynamics of the receptor around its second intracellular loop. We find that membrane unsaturation spares G protein activity but potentiates the recruitment of ß-arrestin in cells. Furthermore, in vivo n-3 PUFA deficiency blunts the behavioral effects of two D2R ligands, quinpirole and aripiprazole. These results highlight the importance of membrane unsaturation for D2R activity and provide a putative mechanism for the ability of PUFAs to enhance antipsychotic efficacy.

3.
Biochim Biophys Acta Biomembr ; 1865(2): 184084, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36368636

RESUMO

The lipid composition of cellular membranes and the balance between the different lipid components can be impacted by aging, certain pathologies, specific diets and other factors. This is the case in a subgroup of individuals with psychiatric disorders, such as schizophrenia, where cell membranes of patients have been shown to be deprived in polyunsaturated fatty acids (PUFAs), not only in brain areas where the target receptors are expressed but also in peripheral tissues. This PUFA deprivation thus represents a biomarker of such disorders that might impact not only the interaction of antipsychotic medications with these membranes but also the activation and signaling of the targeted receptors embedded in the lipid membrane. Therefore, it is crucial to understand how PUFAs levels alterations modulate the different physical properties of membranes. In this paper, several biophysical approaches were combined (Laurdan fluorescence spectroscopy, atomic force microscopy, differential scanning calorimetry, molecular modeling) to characterize membrane properties such as fluidity, elasticity and thickness in PUFA-enriched cell membranes and lipid model systems reflecting the PUFA imbalance observed in some diseases. The impact of both the number of unsaturations and their position along the chain on the above properties was investigated. Briefly, data revealed that PUFA presence in membranes increases membrane fluidity, elasticity and flexibility and decreases its thickness and order parameter. Both the level of unsaturation and their position affect these membrane properties.


Assuntos
Ácidos Graxos Insaturados , Fluidez de Membrana , Humanos , Ácidos Graxos Insaturados/química , Membranas , Membrana Celular/metabolismo , Microscopia de Força Atômica
4.
Sci Rep ; 12(1): 5400, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354858

RESUMO

Several biochemical and biophysical methods are available to determine ligand binding affinities between a biological target and its ligands, most of which require purification, labelling or surface immobilisation. These measurements, however, remain challenging in regards to membrane proteins, as purification processes require their extraction from their native lipid environment, which may in turn impact receptor conformation and functionality. In this study, we have developed a novel experimental procedure using microscale thermophoresis (MST) directly from cell membrane fragments, to determine different ligand binding affinities to a membrane protein, the dopamine D2 receptor (D2R). In order to achieve this, two main challenges had to be overcome: determining the concentration of dopamine D2R in the crude sample; finding ways to minimize or account for non-specific binding of the ligand to cell fragments. Using MST, we were able to determine the D2R concentration in cell membrane fragments to approximately 36.8 ± 2.6 pmol/mg. Next, the doses-responses curves allowed for the determination of KD, to approximately 5.3 ± 1.7 nM, which is very close to the reported value. Important details of the experimental procedure have been detailed in this paper to allow the application of this novel method to various membrane proteins.


Assuntos
Proteínas de Membrana , Ligantes , Conformação Molecular , Ligação Proteica
5.
Biophys Chem ; 285: 106794, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344820

RESUMO

G protein coupled receptors (GPCRs) are a class of membrane proteins that sense extracellular signals ranging from light to odorants and small molecules and activate intracellular signaling pathways that control important physiological responses. Being composed of 7 transmembrane helices linked by extracellular and intracellular loops, the great majority of the sequence of these receptors is embedded in the lipid membrane. Therefore, it is expected GPCR structure and function to be impacted by the surrounding lipid environment and the lipid membrane physico-chemical and mechanical properties. A large number of examples from the literature is provided to highlight the role of the lipid nature (lipid headgroup, membrane polyunsaturation and cholesterol) and membrane physical and mechanical properties (curvature elastic stress, membrane thickness and hydrophobic mismatch, fluidity) in the activity of different GPCRs. In addition, lipids are important co-factors being identified in very specific locations in several GPCR structures. GPCRs and G proteins can also be lipid post-translationally modified and such events can significantly impact membrane binding, trafficking and signaling. These aspects are all treated in this review. Understanding how the lipid can modulate GPCR activity is important not only from a fundamental point of view but also due to the fact that certain pathologies, where GPCRs are central targets, have been associated with important lipid imbalance. Establishing a link between the lipid pathological imbalance and the receptor functioning in such environment is thus essential as it can open avenues to potentially innovative therapeutic strategies.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Colesterol/química , Proteínas de Membrana , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
6.
FEBS J ; 287(11): 2367-2385, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31738467

RESUMO

The chemokine CCR5 receptor is target of maraviroc, a negative allosteric modulator of CCR5 that blocks the HIV protein gp120 from associating with the receptor, thereby inhibiting virus cellular entry. As noted with other G-protein-coupled receptor family members, the role of the lipid environment in CCR5 signaling remains obscure and very modestly investigated. Controversial literature on the impact of cholesterol (Chol) depletion in HIV infection and CCR5 signaling, including the hypothesis that Chol depletion could inhibit HIV infection, lead us to focus on the understanding of Chol impact in the first stages of receptor activation. To address this aim, the approach chosen was to employ reconstituted model lipid systems of controlled lipid composition containing CCR5 from two distinct expression systems: Pichia pastoris and cell-free expression. The characterization of receptor/ligand interaction in terms of total binding or competition binding assays was independently performed by plasmon waveguide resonance and fluorescence anisotropy, respectively. Maraviroc, a potent receptor antagonist, was the ligand investigated. Additionally, coarse-grained molecular dynamics simulation was employed to investigate Chol impact in the receptor-conformational flexibility and dynamics. Results obtained with receptor produced by different expression systems and using different biophysical approaches clearly demonstrate a considerable impact of Chol in the binding affinity of maraviroc to the receptor and receptor-conformational dynamics. Chol considerably decreases maraviroc binding affinity to the CCR5 receptor. The mechanisms by which this effect occurs seem to involve the adoption of distinct receptor-conformational states with restrained structural dynamics and helical motions in the presence of Chol.


Assuntos
Colesterol/metabolismo , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/genética , Receptores CCR5/genética , Colesterol/genética , HIV/patogenicidade , Infecções por HIV/virologia , Humanos , Ligantes , Maraviroc/farmacologia , Receptores Virais/genética , Saccharomycetales/genética , Ressonância de Plasmônio de Superfície , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...