Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17146, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816775

RESUMO

Studying bacterial adhesion to mineral surfaces is crucial for understanding soil properties. Recent research suggests that minimal coverage of sand particles with cell fragments significantly reduces soil wettability. Using atomic force microscopy (AFM), we investigated the influence of hypertonic stress on Pseudomonas fluorescens adhesion to four different minerals in water. These findings were compared with theoretical XDLVO predictions. To make adhesion force measurements comparable for irregularly shaped particles, we normalized adhesion forces by the respective cell-mineral contact area. Our study revealed an inverse relationship between wettability and the surface-organic carbon content of the minerals. This relationship was evident in the increased adhesion of cells to minerals with decreasing wettability. This phenomenon was attributed to hydrophobic interactions, which appeared to be predominant in all cell-mineral interaction scenarios alongside with hydrogen bonding. Moreover, while montmorillonite and goethite exhibited stronger adhesion to stressed cells, presumably due to enhanced hydrophobic interactions, kaolinite showed an unexpected trend of weaker adhesion to stressed cells. Surprisingly, the adhesion of quartz remained independent of cell stress level. Discrepancies between measured cell-mineral interactions and those calculated by XDLVO, assuming an idealized sphere-plane geometry, helped us interpret the chemical heterogeneity arising from differently exposed edges and planes of minerals. Our results suggest that bacteria may have a significant impact on soil wettability under changing moisture condition.


Assuntos
Pseudomonas fluorescens , Solo , Pseudomonas fluorescens/metabolismo , Pressão Osmótica , Microscopia de Força Atômica/métodos , Minerais/metabolismo
2.
FEMS Microbes ; 4: xtac028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333443

RESUMO

Determination of the effect of water stress on the surface properties of bacteria is crucial to study bacterial induced soil water repellency. Changes in the environmental conditions may affect several properties of bacteria such as the cell hydrophobicity and morphology. Here, we study the influence of adaptation to hypertonic stress on cell wettability, shape, adhesion, and surface chemical composition of Pseudomonas fluorescens. From this we aim to discover possible relations between the changes in wettability of bacterial films studied by contact angle and single cells studied by atomic and chemical force microscopy (AFM, CFM), which is still lacking. We show that by stress the adhesion forces of the cell surfaces towards hydrophobic functionalized probes increase while they decrease towards hydrophilic functionalized tips. This is consistent with the contact angle results. Further, cell size shrunk and protein content increased upon stress. The results suggest two possible mechanisms: Cell shrinkage is accompanied by the release of outer membrane vesicles by which the protein to lipid ratio increases. The higher protein content increases the rigidity and the number of hydrophobic nano-domains per surface area.

3.
Appl Environ Microbiol ; 88(21): e0073222, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36226960

RESUMO

Increased drought intensity and frequency exposes soil bacteria to prolonged water stress. While numerous studies reported on behavioral and physiological mechanisms of bacterial adaptation to water stress, changes in bacterial cell surface properties during adaptation are not well researched. We studied adaptive changes in cell surface hydrophobicity (CSH) after exposure to osmotic (NaCl) and matric stress (polyethylene glycol 8000 [PEG 8000]) for six typical soil bacteria (Bacillus subtilis, Arthrobacter chlorophenolicus, Pseudomonas fluorescens, Novosphingobium aromaticivorans, Rhodococcus erythropolis, and Mycobacterium pallens) covering a wide range of cell surface properties. Additional physicochemical parameters (surface chemical composition, surface charge, cell size and stiffness) of B. subtilis and P. fluorescens were analyzed to understand their possible contribution to CSH development. Changes in CSH caused by osmotic and matric stress depend on strain and stress type. CSH of B. subtilis and P. fluorescens increased with stress intensity, R. erythropolis and M. pallens exhibited a generally high but constant contact angle, while the response of A. chlorophenolicus and N. aromaticivorans depended on growth conditions and stress type. Osmotically driven changes in CSH of B. subtilis and P. fluorescens are accompanied by increasing surface N/C ratio, suggesting an increase in protein concentration within the cell wall. Cell envelope proteins thus presumably control bacterial CSH in two ways: (i) by increases in the relative density of surface proteins due to efflux of cytoplasmic water and subsequent cell shrinkage, and (ii) by destabilization of cell wall proteins, resulting in conformational changes which render the surface more hydrophobic. IMPORTANCE Changes in precipitation frequency, intensity, and temporal distribution are projected to result in increased frequency and intensity of droughts and heavy rainfall events. Prolonged droughts can promote the development of soil water repellency (SWR); this impacts the infiltration and distribution of water in the soil profile, exposing soil microorganisms to water stress. Exposure to water stress has recently been reported to result in increased cell surface hydrophobicity. However, the mechanism of this development is poorly understood. This study investigates the changes in the physicochemical properties of bacterial cell surfaces under water stress as a possible mechanism of increased surface hydrophobicity. Our results improve understanding of the microbial response to water stress in terms of surface properties, the variations in stress response depending on cell wall composition, and its contribution to the development of SWR.


Assuntos
Desidratação , Solo , Humanos , Solo/química , Propriedades de Superfície , Microbiologia do Solo , Secas
5.
Heredity (Edinb) ; 127(1): 124-134, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33875831

RESUMO

Polyploidy, or whole-genome duplication, is a common speciation mechanism in plants. An important barrier to polyploid establishment is a lack of compatible mates. Because self-compatibility alleviates this problem, it has long been hypothesized that there should be an association between polyploidy and self-compatibility (SC), but empirical support for this prediction is mixed. Here, we investigate whether the molecular makeup of the Brassicaceae self-incompatibility (SI) system, and specifically dominance relationships among S-haplotypes mediated by small RNAs, could facilitate loss of SI in allopolyploid crucifers. We focus on the allotetraploid species Capsella bursa-pastoris, which formed ~300 kya by hybridization and whole-genome duplication involving progenitors from the lineages of Capsella orientalis and Capsella grandiflora. We conduct targeted long-read sequencing to assemble and analyze eight full-length S-locus haplotypes, representing both homeologous subgenomes of C. bursa-pastoris. We further analyze small RNA (sRNA) sequencing data from flower buds to identify candidate dominance modifiers. We find that C. orientalis-derived S-haplotypes of C. bursa-pastoris harbor truncated versions of the male SI specificity gene SCR and express a conserved sRNA-based candidate dominance modifier with a target in the C. grandiflora-derived S-haplotype. These results suggest that pollen-level dominance may have facilitated loss of SI in C. bursa-pastoris. Finally, we demonstrate that spontaneous somatic tetraploidization after a wide cross between C. orientalis and C. grandiflora can result in production of self-compatible tetraploid offspring. We discuss the implications of this finding on the mode of formation of this widespread weed.


Assuntos
Brassicaceae , Capsella , Brassicaceae/genética , Capsella/genética , Diploide , Hibridização Genética , Poliploidia
6.
Sci Total Environ ; 694: 133666, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31394325

RESUMO

Microbial transport in soil affects pathogen retention, colonization, and innoculant delivery in bioremediating agricultural soils. Various bacteria strains residing in the fluid phases of soils are potential contaminants affecting human health. We measured the transport of hydrophilic Escherichia coli (E. coli) and hydrophobic Rhodococcus erythropolis (R. erythropolis) bacteria through initially air-dried wettable or water-repellent soil columns to understand the effect of water repellency and the hydrophobicity of the organism on its retention, release, and transport properties. Bacteria suspensions infiltrated the top of the columns under saturated (0 cm) and unsaturated (-5 cm) flows in the air-dried (pulse 1) and rewetting (pulse 2) conditions. Cells were recovered from the leachates and the soil extracts by the viable counts. Wettable soil efficiently retained both hydrophobic and hydrophilic bacteria (>80%) in initial air-dried conditions (pulse 1). Even after rewetting, and the formation and expansion of water films and corresponding reduction of the air-water interfacial area (pulse 2), few bacteria were released (maximum 31.5% and 10.1% for saturated and unsaturated flows, respectively), whereas more cells were released from the water-repellent counterpart (more that 72%). The smaller size of hydrophobic R. erythropolis made cell transport possible within the thinner water films of both soils compared to hydrophilic E. coli through pulses 1 and 2. The shape of each strain's retention profiles was uniform and exponential as influenced by soil, strain, and water flow conditions. The results suggest that hydrophobic bacteria will disperse readily when leached into initially dry soil, while hydrophilic bacteria are more susceptible to leaching, posing a risk of pathogen contamination. Clearly the wettability of soil and organisms affects fate and transport.


Assuntos
Escherichia coli/metabolismo , Rhodococcus/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Agricultura , Biodegradação Ambiental , Interações Hidrofóbicas e Hidrofílicas
7.
New Phytol ; 224(1): 505-517, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31254395

RESUMO

A crucial step in the transition from outcrossing to self-fertilization is the loss of genetic self-incompatibility (SI). In the Brassicaceae, SI involves the interaction of female and male specificity components, encoded by the genes SRK and SCR at the self-incompatibility locus (S-locus). Theory predicts that S-linked mutations, and especially dominant mutations in SCR, are likely to contribute to loss of SI. However, few studies have investigated the contribution of dominant mutations to loss of SI in wild plant species. Here, we investigate the genetic basis of loss of SI in the self-fertilizing crucifer species Capsella orientalis, by combining genetic mapping, long-read sequencing of complete S-haplotypes, gene expression analyses and controlled crosses. We show that loss of SI in C. orientalis occurred < 2.6 Mya and maps as a dominant trait to the S-locus. We identify a fixed frameshift deletion in the male specificity gene SCR and confirm loss of male SI specificity. We further identify an S-linked small RNA that is predicted to cause dominance of self-compatibility. Our results agree with predictions on the contribution of dominant S-linked mutations to loss of SI, and thus provide new insights into the molecular basis of mating system transitions.


Assuntos
Capsella/genética , Capsella/fisiologia , Sequência de Bases , Cruzamentos Genéticos , Mutação da Fase de Leitura/genética , Regulação da Expressão Gênica de Plantas , Genes Dominantes , Loci Gênicos , Haplótipos/genética , Filogenia , Característica Quantitativa Herdável , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reprodução/genética , Autoincompatibilidade em Angiospermas/genética , Fatores de Tempo
8.
Colloids Surf B Biointerfaces ; 172: 280-287, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30173095

RESUMO

Water protection and bioremediation strategies in the vadose zone require understanding the factors controlling bacterial transport for different hydraulic conditions. Breakthrough experiments were made in two different flow conditions: i) an initial bacteria pulse under ponded infiltration into dry sand (-15,000 cm); ii) a second bacteria pulse into the same columns during subsequent infiltration in constant water content and steady-state flow. Escherichia coli (E. coli) and Rhodococcus erythropolis (R. erythropolis) were used to represent hydrophilic and hydrophobic bacteria, respectively. Equilibrium and attachment/detachment models were tested to fit bromide (Br-) and bacteria transport data using HYDRUS-1D. Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DVLO (XDLVO) interaction energy profiles were calculated to predict bacteria sorption at particles. Adsorption of bacteria at air-water interfaces was estimated by a hydrophobic force approach. Results suggested greater retention of bacteria in water repellent sand compared with wettable sand. Inverse parameter optimization suggested that physico-chemical attachment of both E. coli and R. erythropolis was thousands of times lower in wettable than repellant sand and straining was 10-fold lower in E. coli for wettable vs repellant sand compared to the exact opposite by orders of magnitude with R. erythropolis. HYDRUS did not provide a clear priority of importance of solid-water or air-water interfaces in bacteria retention. Optimized model parameters did not show a clear relation to the (X)DLVO adsorption energies. This illustrated the ambivalence of (X)DLVO to predict bacterial attachment at solid soil particles of different wetting properties. Simultaneous analysis of mass recovery, numerical modeling, and interaction energy profiles thus suggested irreversible straining due to bacteria sizing as dominant compared to attachment to liquid-solid or liquid-air interfaces. Further studies are needed to distinguish straining mechanisms (i.e. pore structure or film straining) in different hydraulic conditions.


Assuntos
Escherichia coli/metabolismo , Modelos Biológicos , Rhodococcus/metabolismo , Água/química , Transporte Biológico , Brometos/metabolismo , Simulação por Computador , Escherichia coli/citologia , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Reologia , Rhodococcus/citologia , Molhabilidade
9.
G3 (Bethesda) ; 8(4): 1327-1333, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29476024

RESUMO

Rapid advances in short-read DNA sequencing technologies have revolutionized population genomic studies, but there are genomic regions where this technology reaches its limits. Limitations mostly arise due to the difficulties in assembly or alignment to genomic regions of high sequence divergence and high repeat content, which are typical characteristics for loci under strong long-term balancing selection. Studying genetic diversity at such loci therefore remains challenging. Here, we investigate the feasibility and error rates associated with targeted long-read sequencing of a locus under balancing selection. For this purpose, we generated bacterial artificial chromosomes (BACs) containing the Brassicaceae S-locus, a region under strong negative frequency-dependent selection which has previously proven difficult to assemble in its entirety using short reads. We sequence S-locus BACs with single-molecule long-read sequencing technology and conduct de novo assembly of these S-locus haplotypes. By comparing repeated assemblies resulting from independent long-read sequencing runs on the same BAC clone we do not detect any structural errors, suggesting that reliable assemblies are generated, but we estimate an indel error rate of 5.7×10-5 A similar error rate was estimated based on comparison of Illumina short-read sequences and BAC assemblies. Our results show that, until de novo assembly of multiple individuals using long-read sequencing becomes feasible, targeted long-read sequencing of loci under balancing selection is a viable option with low error rates for single nucleotide polymorphisms or structural variation. We further find that short-read sequencing is a valuable complement, allowing correction of the relatively high rate of indel errors that result from this approach.


Assuntos
Capsella/genética , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequência de Bases , Custos e Análise de Custo , Estudos de Viabilidade , Sequenciamento de Nucleotídeos em Larga Escala/economia , Anotação de Sequência Molecular
10.
Sci Rep ; 7: 42877, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211469

RESUMO

Soil wettability (quantified in terms of contact angle, CA) is crucial for physical, chemical, and biological soil functioning. As the CA is determined by components present within the outmost nanometer of particles, this study applied X-ray photoelectron spectroscopy (XPS) with a maximum analysis depth of 10 nm to test the relationship between CA and surface elemental composition, using soil samples from a chronosequence where CA increased from 0° (0 yrs) to about 98° (120 yrs). Concurrently, as seen by XPS, C and N content increased and the content of O and the mineral-derived cations (Si, Al, K, Na, Ca, Mg, Fe) decreased. The C content was positively correlated with CA and least squares fitting indicated increasing amounts of non-polar C species with soil age. The contents of O and the mineral-derived cations were negatively correlated with CA, suggesting an increasing organic coating of the minerals that progressively masked the underlying mineral phase. The atomic O/C ratio was found to show a close negative relationship with CA, which applied as well to further sample sets of different texture and origin. This suggests the surface O/C ratio to be a general parameter linking surface wettability and surface elemental composition.

11.
J Environ Qual ; 37(3): 915-24, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18453414

RESUMO

A new method to diagnose the environmental sustainability of specific orchard management practices was derived and tested. As a significant factor for soil quality, the soil carbon (C) management in the topsoil of the tree-row of an integrated and organic apple orchard was selected and compared. Soil C management was defined as land management practices that maintain or increase soil C. We analyzed the impact of the soil C management on biological (microbial biomass C, basal respiration, dehydrogenase activity, respiratory quotient) and physical (aggregate stability, amount of plant-available water, conductive mean pore diameter near water saturation) soil properties. Soil in the alley acted as a reference for the managed soil in the tree row. The total and hot-water-extractable C amounts served as a combined proxy for the soil C management. The soil C management accounted for 0 to 81% of the degradation or enhancement of biophysical soil properties in the integrated and organic system. In the integrated system, soil C management led to a loss of C in the top 0.3 m of the tree row within 12 yr, causing a decrease in microbial activities. In the tree row of the organic orchard, C loss occurred in the top 0.1 m, and the decrease in microbial activities was small or not significant. Regarding physical soil properties, the C loss in the integrated system led to a decrease of the aggregate stability, whereas it increased in the organic system. Generally, the impact of soil C management was better correlated with soil microbial than with the physical properties. With respect to environmental soil functions that are sensitive to the decrease in microbial activity or aggregate stability, soil C management was sustainable in the organic system but not in the integrated system.


Assuntos
Carbono/química , Produtos Agrícolas , Malus , Solo/análise , Fenômenos Biofísicos , Biofísica , Nova Zelândia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...