Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 286: 369-78, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25596552

RESUMO

This paper discusses the effects of accelerated carbonation on the leaching behaviour of two types of stainless steel slags (electric arc furnace and argon oxygen decarburisation slag). The release of major elements and toxic metals both at the natural pH and at varying pH conditions was addressed. Geochemical modelling of the eluates was used to theoretically describe leaching and derive information about mineralogical changes induced by carbonation. Among the investigated elements, Ca and Si were most appreciably affected by carbonation. A very clear effect of carbonation on leaching was observed for silicate phases; geochemical modelling indicated that the Ca/Si ratio of Ca-controlling minerals shifted from ∼ 1 for the untreated slag to 0.5-0.67 for the carbonated samples, thus showing that the carbonation process left some residual Ca-depleted silicate phases while the extracted Ca precipitated in the form of carbonate minerals. For toxic metals the changes in leaching induced by carbonation appeared to be mainly related to the resulting pH changes, which were as high as ∼ 2 orders of magnitude upon carbonation. Depending on the specific shape of the respective solubility curves, the extent of leaching of toxic metals from the slag was differently affected by carbonation.


Assuntos
Dióxido de Carbono/química , Resíduos Industriais/análise , Metais/análise , Aço Inoxidável , Gerenciamento de Resíduos/métodos , Sequestro de Carbono , Modelos Teóricos
2.
J Hazard Mater ; 283: 302-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25289564

RESUMO

The results of direct aqueous accelerated carbonation of three types of steel manufacturing residues, including an electric arc furnace (EAF) slag and two basic oxygen furnace (BOF) slags, are reported. Batch accelerated carbonation tests were conducted at different temperatures and CO2 pressures applying the thin-film route (liquid to solid, L/S, ratio=0.3L/kg) or the slurry-phase route (L/S ratio=5L/kg). The CO2 uptake strongly depended on both the slag characteristics and the process route; maximum yields of 280 (EAF), 325 (BOF1) and 403 (BOF2) gCO2/kg slag were achieved in slurry phase at T=100°C and pCO2=10 bar. Differently from previous studies, additional carbonates (other than Ca-based phases) were retrieved in the carbonated BOF slags, indicating that also Mg-, Fe- and Mn-containing phases partially reacted with CO2 under the tested conditions. The results hence show that the effects of accelerated carbonation in terms of CO2 uptake capacity, yield of mineral conversion into carbonates and mineralogy of the treated product, strongly rely on several factors. These include, above all, the mineralogy of the original material and the operating conditions adopted, which thus need specific case-by-case optimization to maximize the CO2 sequestration yield.


Assuntos
Dióxido de Carbono/química , Resíduos Industriais , Eliminação de Resíduos/métodos , Aço , Carbonatos
3.
Waste Manag ; 30(7): 1310-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20045306

RESUMO

This paper investigates the effects of accelerated carbonation on the characteristics of bottom ash from refuse derived fuel (RDF) incineration, in terms of CO(2) uptake, heavy metal leaching and mineralogy of different particle size fractions. Accelerated aqueous carbonation batch experiments were performed to assess the influence of operating parameters (temperature, CO(2) pressure and L/S ratio) on reaction kinetics. Pressure was found to be the most relevant parameter affecting the carbonation yield. This was also found to be largely dependent on the specific BA fraction treated, with CO(2) uptakes ranging from approximately 4% for the coarse fractions to approximately 14% for the finest one. Carbonation affected both the mineralogical characteristics of bottom ash, with the appearance of neo-formation minerals, and the leaching behaviour of the material, which was found to be mainly related to the change upon carbonation in the natural pH of the ash.


Assuntos
Incineração , Resíduos/análise , Dióxido de Carbono/análise , Dióxido de Carbono/química , Cinética , Metais Pesados/análise , Metais Pesados/química , Tamanho da Partícula
4.
Water Sci Technol ; 50(10): 235-42, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15656318

RESUMO

The aim of the present study was to investigate how phenol modifies, through cometabolism, the biodegrading capability of 3-chlorophenol (3-CP) in a sequencing batch reactor seeded with a mixed culture obtained from a domestic sewage treatment plant. Two laboratory-scale SBRs, one fed 3-CP only and the other fed 3-CP and phenol in the same concentration, were seeded with the partially acclimated biomass. The removal capability in both reactors was measured for progressive increases in the feed organic loading. Cometabolism enhanced biodegradation of 3-CP by reducing both the initial lag period and the time required for the complete removal. 700 mg/L 3-CP was demonstrated to be the highest concentration, which could be completely degraded during the active phase (fill plus react) either in the presence or absence of phenol as the growth substrate even though the lag period was shorter when phenol was present. The operating strategy required modification for the complete removal of 800 mg/L 3-CP. An increase in the phenol to 3-CP ratio did, however, improve 3-CP degradation rate.


Assuntos
Bactérias Aeróbias/metabolismo , Reatores Biológicos , Clorofenóis/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Animais , Biodegradação Ambiental , Meios de Cultura , Fenol/metabolismo , Esgotos/química , Fatores de Tempo
5.
Artigo em Inglês | MEDLINE | ID: mdl-14524666

RESUMO

The present paper shows the results obtained through a study on the biodegradation of 3-chlorophenol (3-CP) in a Sequencing Batch Reactor (SBR). To such a purpose a lab-scale SBR was fed a synthetic wastewater containing 3-CP and nutrients (nitrogen and phosphorus) diluted in tap water. The operating strategy, in terms of both the duration of either the cycle or the react phase, was changed throughout the experimental activity in order to find out the optimal one allowing to ensure constant and high removal efficiency despite the increasing 3-chlorophenol concentration in the feed. Biomass collected from a full-scale continuous flow activated sludge facility treating domestic wastewater was used as seed, after being acclimated to 3-CP by means of several batch tests. The results showed that a periodically operated activated sludge system can be successfully used for the biodegradation of chlorophenol compounds, after the needed members of the microbiological consortium are selected and enriched.


Assuntos
Reatores Biológicos , Clorofenóis/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Biodegradação Ambiental , Biomassa , Esgotos/química , Esgotos/microbiologia
6.
J Chromatogr A ; 911(1): 135-41, 2001 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-11269592

RESUMO

An extraction method for the determination of phenols in contaminated soils, based on the application of solid-phase microextraction (SPME) coupled with GC-flame ionization detection analysis, was developed and tested. This method was developed using a natural soil spiked with phenol to a concentration level typical of an acute contamination event that can occur in an industrial site. The effects of the extraction parameters (pH, extraction time and salt concentration) on the extraction efficiency were studied and the method was then applied to determine the pollutant concentration at the beginning and during the biological treatment of a soil, contaminated with phenol and 3-chlorophenol, respectively. The SPME results were validated by comparison with those obtained with an US Environmental Protection Agency certified extraction method. The SPME method was also successfully applied to the determination of the adsorption behavior of 3-chlorophenol on a natural clay soil and was shown to be suitable for different matrices and phenolic compounds. Application of SPME technique results in a sharp reduction of the extraction times with negligible solvent consumption.


Assuntos
Cromatografia Gasosa/métodos , Fenóis/análise , Poluentes do Solo/análise , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...