Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 173: 869-875, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30551303

RESUMO

The studies of low-temperature immobilization of bound water in Antarctic lichenized fungus Turgidosculum complicatulum were performed using 1H NMR and DSC over a wide range of thallus hydration. 1H NMR free induction decays were decomposed into a solid component well described by the Gaussian function and two exponentially decaying components coming from a tightly bound water and from a loosely bound water fraction. 1H NMR spectra revealed one averaged mobile proton signal component. 1H NMR measurements recorded in time and in frequency domain suggest the non-cooperative bound water immobilization in T. complicatulum thallus. The threshold of the hydration level estimated by 1H NMR analysis at which the cooperative bound water freezing was detected was Δm/m0 ≈ 0.39, whereas for DSC analysis was equal to Δm/m0 = 0.375. Main ice melting estimated from DSC measurements for zero hydration level of the sample starts at tm = -(19.29 ± 1.19)°C. However, DSC melting peak shows a composed form being a superposition of the main narrow peak (presumably melting of mycobiont areas) and a broad low-temperature shoulder (presumably melting of isolated photobiont cells). DSC traces recorded after two-hour incubation of T. complicatulum thallus at -20 °C suggest much lower threshold level of hydration at which the ice formation occurs (Δm/m0 = 0.0842). Presumably it is a result of diffusion induced migration of separated water molecules to ice microcrystallites already present in thallus, but still beyond the calorimeter resolution.


Assuntos
Ascomicetos/metabolismo , Clorófitas/metabolismo , Temperatura Baixa , Microbiologia da Água , Água/química , Regiões Antárticas , Varredura Diferencial de Calorimetria , Congelamento , Espectroscopia de Ressonância Magnética , Termodinâmica
2.
Extremophiles ; 21(2): 331-343, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28000023

RESUMO

Gaseous phase hydration effect of extremely dehydrated thallus of the Antarctic lichenized fungus Turgidosculum complicatulum and of green alga Prasiola crispa was observed using hydration kinetics, sorption isotherm, 1H-NMR spectroscopy and relaxometry. Three bound water fractions were distinguished: (1) very tightly bound water, (2) tightly bound water and (3) a loosely bound water fraction detected at higher levels of hydration. Sorption isotherm was sigmoidal in form and well fitted using Dent model. The relative mass of water saturating primary water binding sites was ΔM/m 0 = 0.055 for T. complicatulum and ΔM/m 0 = 0.131 for P. crispa. 1H-NMR free induction decays (FIDs) for T. complicatulum and for P. crispa were superpositions of a solid signal component, and one averaged liquid signal component for P. crispa thallus ([Formula: see text] ≈ 80 µs) or two liquid signal components coming from a tightly bound ([Formula: see text]≈ 71 µs) and from a loosely bound water fraction ([Formula: see text]≈ 278 µs) for T. complicatulum. 1H-NMR spectra recorded for T. complicatulum and for P. crispa thalli revealed one averaged mobile proton signal component L. The total liquid signal component expressed in units of solid (L 1 + L 2)/S suggests the presence of water soluble fraction in T. complicatulum thallus.


Assuntos
Clorófitas/metabolismo , Líquens/metabolismo , Água/metabolismo , Regiões Antárticas , Clorófitas/química , Desidratação , Líquens/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA