Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 20(21): 2823-2829, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31536665

RESUMO

The development of hyperpolarization technologies enabled several yet exotic NMR applications at low and ultra-low fields (ULF), where without hyperpolarization even the detection of a signal from analytes is a challenge. Herein, we present a method for the simultaneous excitation and observation of homo- and heteronuclear multiple quantum coherences (from zero up to the third-order), which give an additional degree of freedom for ULF NMR experiments, where the chemical shift variation is negligible. The approach is based on heteronuclear correlated spectroscopy (COSY); its combination with a phase-cycling scheme allows the selective observation of multiple quantum coherences of different orders. The nonequilibrium spin state and multiple spin orders are generated by signal amplification by reversible exchange (SABRE) and detected at ULF with a superconducting quantum interference device (SQUID)-based NMR system.

2.
Rev Sci Instrum ; 89(12): 125103, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30599552

RESUMO

Ultralow-field (ULF) nuclear magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are promising spectroscopy and imaging methods allowing for, e.g., the simultaneous detection of multiple nuclei or imaging in the vicinity of metals. To overcome the inherently low signal-to-noise ratio that usually hampers a wider application, we present an alternative approach to prepolarized ULF MRS employing hyperpolarization techniques like signal amplification by reversible exchange (SABRE) or Overhauser dynamic nuclear polarization (ODNP). Both techniques allow continuous hyperpolarization of 1H as well as other MR-active nuclei. For the implementation, a superconducting quantum interference device (SQUID)-based ULF MRS/MRI detection scheme was constructed. Due to the very low intrinsic noise level, SQUIDs are superior to conventional Faraday detection coils at ULFs. Additionally, the broadband characteristics of SQUIDs enable them to simultaneously detect the MR signal of different nuclei such as 13C, 19F, or 1H. Since SQUIDs detect the MR signal directly, they are an ideal tool for a quantitative investigation of hyperpolarization techniques such as SABRE or ODNP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...