Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891240

RESUMO

Phytophthora root rot (PRR) of chickpea (Cicer arietinum) caused by Phytophthora medicaginis is an important disease. Partial resistance to PRR is sourced from Cicer echinospermum. In this study, we evaluated if lines with low levels of PRR foliage symptoms in two contrasting recombinant inbred line (RIL) populations parented by chickpea cultivars (Yorker and Rupali) and 04067-81-2-1-1 (C. echinospermum, interspecific breeding line) had a significant drag on yield parameters. For the Yorker × 04067-81-2-1-1 population with the highest level of PRR resistance, in the absence of PRR, low foliage symptom RIL had significantly later flowering and podding, lower grain yields, and lighter seed and shorter plant phenotypes than high foliage symptom RIL. A quantitative trait locus analysis identified significant QTL for flowering, height, 100-seed weight, and yield, and there was a significantly higher frequency of alleles for the negative agronomic traits (i.e., drag) from the 04067-81-2-1-1 parent in low foliage symptom RIL than in high foliage symptom RIL. For the Rupali × 04067-81-2-1-1 population with lower levels of PRR resistance, in the absence of PRR, low foliage symptom RIL had significantly lighter seed and shorter plants than high foliage symptom RIL. Significant QTL were detected, the majority were for the timing of flowering and podding (n = 18), others were for plant height, yield, and 100-seed weight. For this second population, the frequency of alleles for the negative agronomic traits from the 04067-81-2-1-1 parent did not differ between low and high foliage symptom RIL. The 100 seed weight of RIL under moderate PRR disease pressure showed some promise as a yield component trait to identify phenotypes with both high levels of PRR resistance and grain yield potential for further seed number evaluations. We identified that large population sizes are required to enable selection among chickpea × C. echinospermum crosses for high levels of PRR resistance without a significant drag on yield.

2.
Front Plant Sci ; 14: 1115417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890901

RESUMO

Phytophthora root rot caused by Phytophthora medicaginis is an important disease of chickpeas (Cicer arietinum) in Australia with limited management options, increasing reliance on breeding for improved levels of genetic resistance. Resistance based on chickpea-Cicer echinospermum crosses is partial with a quantitative genetic basis provided by C. echinospermum and some disease tolerance traits originating from C. arietinum germplasm. Partial resistance is hypothesised to reduce pathogen proliferation, while tolerant germplasm may contribute some fitness traits, such as an ability to maintain yield despite pathogen proliferation. To test these hypotheses, we used P. medicaginis DNA concentrations in the soil as a parameter for pathogen proliferation and disease assessments on lines of two recombinant inbred populations of chickpea-C. echinospermum crosses to compare the reactions of selected recombinant inbred lines and parents. Our results showed reduced inoculum production in a C. echinospermum backcross parent relative to the C. arietinum variety Yorker. Recombinant inbred lines with consistently low levels of foliage symptoms had significantly lower levels of soil inoculum compared to lines with high levels of visible foliage symptoms. In a separate experiment, a set of superior recombinant inbred lines with consistently low levels of foliage symptoms was tested for soil inoculum reactions relative to control normalised yield loss. The in-crop P. medicaginis soil inoculum concentrations across genotypes were significantly and positively related to yield loss, indicating a partial resistance-tolerance spectrum. Disease incidence and the rankings for in-crop soil inoculum were correlated strongly to yield loss. These results indicate that soil inoculum reactions may be useful to identify genotypes with high levels of partial resistance.

3.
Planta ; 254(2): 40, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34324072

RESUMO

MAIN CONCLUSION: Non-canonical AUX/IAA protein, OsIAA29, and ZmMPR-1 homologues, OsMRPLs, are part of an auxin-related signalling cascade operating in the dorsal aleurone during early rice grain development. Endosperm of rice and other cereals accumulates high concentrations of the predominant in planta auxin, indole-3-acetic acid (IAA) during early grain development. However, IAA signalling and function during endosperm development are poorly understood. Here, we report that OsYUC12 (an auxin biosynthesis gene) and OsIAA29 (encoding a non-canonical AUX/IAA) are both expressed exclusively in grains, reaching a maximum 5-6 days after pollination. OsYUC12 expression is localised in the aleurone, sub-aleurone and embryo, whereas OsIAA29 expression is restricted to a narrow strip in the dorsal aleurone, directly under the vascular bundle. Although rice has been reported to lack endosperm transfer cells (ETCs), this region of the aleurone is enriched with sugar transporters and is likely to play a key role in apoplastic nutrient transfer, analogous to ETCs in other cereals. OsIAA29 has orthologues only in grass species; expression of which is also specific to early grain development. OsYUC12 and OsIAA29 are temporally co-expressed with two genes (AL1 and OsPR602) previously linked to the development of dorsal aleurone or ETCs. Also up-regulated at the same time is a cluster of MYB-related genes (designated OsMRPLs) homologous to ZmMRP-1, which regulates maize ETC development. Wheat homologues of ZmMRP-1 are similarly expressed in ETCs. Although previous work has suggested that other cereals do not have orthologues of ZmMRP-1, our work suggests OsIAA29 and OsMRPLs and their homologues in other grasses are part of an auxin-regulated, conserved signalling network involved in the differentiation of cells with ETC-like function in developing cereal grains.


Assuntos
Oryza , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Funct Plant Biol ; 48(8): 802-814, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33715766

RESUMO

The effect of auxin on wheat (Triticum aestivum L.) grain size is contentious. Additionally, the contributions to the IAA pool from de novo synthesis versus hydrolysis of IAA-glucose are unclear. Here, we describe the first comprehensive study of tryptophan aminotransferase and indole-3-pyruvate mono-oxygenase expression from 5 to 20 days after anthesis. A comparison of expression data with measurements of endogenous IAA via combined liquid chromatography-tandem mass spectrometry using heavy isotope labelled internal standards indicates that TaTAR2-B3, TaYUC9-A1, TaYUC9-B, TaYUC9-D1, TaYUC10-A and TaYUC10-D are primarily responsible for IAA production in developing grains. Furthermore, these genes are expressed specifically in developing grains, like those found in rice (Oryza sativa L.) and maize (Zea mays L.). Our results cast doubt on the proposed role of THOUSAND-GRAIN WEIGHT gene, TaTGW6, in promoting larger grain size via negative effects on grain IAA content. Work on this gene overlooked the contribution of IAA biosynthesis from tryptophan. Although IAA synthesis occurs primarily in the endosperm, we show the TaYUC9-1 group is also strongly expressed in the embryo. Within the endosperm, TaYUC9-1 expression is highest in aleurone and transfer cells, suggesting that IAA has a key role in differentiation of these tissues as has been proposed for other cereals.


Assuntos
Amido , Triticum , Endosperma , Ácidos Indolacéticos , Triticum/genética , Triptofano Transaminase
5.
J Econ Entomol ; 108(1): 20-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26470099

RESUMO

Thrips have been recognized as primary vectors of tomato spotted wilt virus (TSWV) with Frankliniella occidentalis (Pergande) reported as the most important and efficient vector, while other species such as Thrips tabaci Lindeman also include populations that can vector the virus. A study was undertaken to establish the diversity of thrips and presence of vectors for TSWV in four major tomato production areas in Kenya. The cytochrome oxidase 1 (CO1) gene was used to generate sequences from thrips samples collected from tomatoes and weeds, and phylogenetic analysis done to establish the variation within potential vector populations. Ceratothripoides brunneus Bagnall was the predominant species of thrips in all areas. F. occidentalis and T. tabaci were abundant in Nakuru, Kirinyaga, and Loitokitok but not detected at Bungoma. Other vectors of tospoviruses identified in low numbers were Frankliniella schultzei (Trybom) and Scirtothrips dorsalis Hood. Variation was observed in T. tabaci, F. occidentalis, and F. schultzei. Kenyan specimens of T. tabaci from tomato belonged to the arrhenotokous group, while those of F. occidentalis clustered with the Western flower thrips G group. The detection of RNA of TSWV in both of these species of thrips supported the role they play as vectors. The study has demonstrated the high diversity of thrips species in tomato production and the occurrence of important vectors of TSWV and other tospoviruses.


Assuntos
Biodiversidade , Insetos Vetores/genética , Solanum lycopersicum/virologia , Tisanópteros/genética , Tospovirus , Animais , Especificidade de Hospedeiro , Insetos Vetores/virologia , Quênia , Tisanópteros/virologia
6.
Proteomics ; 9(2): 335-49, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19105169

RESUMO

A proteomic approach was used to uncover the inducible molecular defense mechanism of cotton root occurring during the compatible interaction with Thielaviopsis basicola. Microscopic observation of cotton root inoculated with a suspension of conidia showed that this necrotrophic hemibiotroph fungus interacts with the plant and completes its life cycle in our experimental system. 2-DE analysis of root extracts taken after 1, 3, 5, and 7 days postinoculation and cluster analysis of the protein expression levels showed four major profiles (constant, upregulated, one slightly downregulated, and one dramatically downregulated). Spots significantly (p<0.05) upregulated were analyzed by LC-MS/MS and identified using MASCOT MS/MS ion search software and associated databases. These proteins included defense and stress related proteins, such as pathogenesis-related proteins and proteins likely to be involved in the oxidative burst, sugar, and nitrogen metabolism as well as amino acid and isoprenoid synthesis. While many of the identified proteins are common components of the defense response of most plants, a proteasome subunit and a protein reported to be induced only in cotton root following Meloidogyne incognita infection were also identified.


Assuntos
Ascomicetos/metabolismo , Gossypium/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Técnicas de Cultura de Células , Análise por Conglomerados , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Gossypium/crescimento & desenvolvimento , Proteínas de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Microbiologia do Solo , Esporos Fúngicos/metabolismo , Regulação para Cima
7.
Environ Microbiol ; 9(2): 512-20, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17222149

RESUMO

Species of the necrotrophic fungal pathogen Fusarium that cause head blight and crown rot of cereals including wheat also infect a number of alternative host plants. This raises the prospect of more damaging pathogen strains originating and persisting as highly successful saprophytes on hosts other than wheat. The immediate impact on pathogenic (aggressiveness) and saprophytic (growth rate and fecundity) behaviour of six isolates with low, moderate or high initial aggressiveness was examined in two species of Fusarium after their passage through 10 alternative plant hosts. One passage through alternative hosts significantly reduced the pathogenic fitness of most isolates, but this change was not associated with a concomitant change in their overall saprophytic behaviour. The overall weak association between aggressiveness, fecundity and growth rate both before and after passage through the alternative hosts indicate that pathogenic and saprophytic fitness traits may be independently controlled in both Fusarium species. Thus, there was no trade-off between pathogenic and saprophytic fitness in these necrotrophic plant pathogens.


Assuntos
Grão Comestível/microbiologia , Fusarium/fisiologia , Fertilidade , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Hordeum/microbiologia , Doenças das Plantas/microbiologia , Secale/microbiologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...